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Abstract: Animal experiments remain essential to understand the
fundamental mechanisms underpinning malignancy and to dis-
cover improved methods to prevent, diagnose and treat cancer.
Excellent standards of animal care are fully consistent with the
conduct of high quality cancer research. Here we provide updated
guidelines on the welfare and use of animals in cancer research. All
experiments should incorporate the 3Rs: replacement, reduction
and refinement. Focusing on animal welfare, we present recom-
mendations on all aspects of cancer research, including: study
design, statistics and pilot studies; choice of tumour models
(e.g., genetically engineered, orthotopic and metastatic); therapy
(including drugs and radiation); imaging (covering techniques,
anaesthesia and restraint); humane endpoints (including tumour
burden and site); and publication of best practice.

LAY SUMMARY

In order for scientists to understand how cancers develop
and spread throughout the body and to discover new and
more effective ways to diagnose and treat cancer, it is
necessary to carry out research on live animals. Animal studies
(over 95% of which are conducted in mice) are essential
to understand the complexities of the fundamental processes
that underpin cancer within living organisms. They are
also required by regulatory authorities before any trials
of new drugs can be tested in humans. Animal studies are
only performed after every feasible test has been conducted
on cancer cells in the laboratory and where no alternative
exists. Adverse effects on the animals are minimised as far as
possible. However, it is a source of concern for society
and research scientists alike that, as we cannot replace all
animal experiments in the immediate future, the highest
standards of welfare are upheld. This publication builds on
two previous sets of guidelines to provide updated and
enhanced recommendations for the care and use of animals
in cancer research; to develop procedures that reduce, replace
or refine animal studies; and to communicate best practice
throughout the world. In all cases, however, experimental
designs and procedures should be tailored to the needs of
the specific studies.
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BACKGROUND AND SCOPE

Over the last decade there has been an extraordinary increase
in our knowledge of the fundamental molecular processes that are
involved in the development of cancer and its response to
treatment (Hanahan and Weinberg, 2000; Vogelstein and Kinzler,
2004; Stratton et al, 2009). The public rightfully expect this
explosion in basic research understanding to be translated into
rapid improvements in prevention, diagnosis and treatment,
particularly for the more common cancers and indeed for any
malignant disease where there is still clearly an unmet need for
more effective therapies. In recent years the identification of the
genes and pathways that give rise to cancer dependencies and
vulnerabilities has taken us further towards the development of
individualised, molecularly targeted therapies (Sawyers, 2004;
Collins and Workman, 2006; Workman and de Bono, 2008).

Along with growth in fundamental knowledge and greater
translational insight has come the development of new in vitro and
ex vivo methodologies and research techniques that should further
extend our still incomplete genetic, molecular and holistic
understanding of cancer, and in addition should help to ensure
that improved methods for diagnosis, therapy and prevention will
be developed more effectively for patient benefit. Nevertheless, we
are still some way from the point where all of the necessary
information that is required to introduce a new drug into the clinic
in terms of safety and efficacy could be gained without the use of
animals in research. Moreover, animals remain essential to extend
our understanding of the mechanisms responsible for cancer and
to identify, for example, new targets and biomarkers.

It is clearly important that the welfare of animals in cancer
research is protected, both from an ethical point of view and
also because it is widely acknowledged to be entirely consistent
with good science (Osborne et al, 2009). Under the earlier
sponsorship of the former United Kingdom Coordinating
Committee for Cancer Research (UKCCCR), two sets of guidelines
have been published previously (Workman, 1988; Workman et al,
1998). Although these guidelines were well received, and are still
widely used and cited, it is over 10 years since they were last
revised, in which time the science has moved on appreciably.
The main aim of this article is to provide new guidelines for the
cancer research community concerning the use of experimental
animals in oncology, with a major emphasis on their welfare. We
focus on rodents as these are predominantly used for cancer
research: in 2008, for example, the UK government Home
Office statistics showed that 96.8% of animals used in cancer
research were mice (http://scienceandresearch.homeoffice.gov.uk/
animal-research/publications-and-reference/statistics/index.html).
While development of medicines may require testing in other
species, use of animals in regulatory toxicology is outside the scope
of this review.

The present guidelines should be applied to studies focused on
all aspects of cancer research, including experiments aimed at
understanding fundamental cancer biology as well more transla-
tional work, and should be used in conjunction with more general
guidelines for the care and welfare of animals (see examples
below and Additional information). It is expected that animal
housing will be maintained according to the highest standards,
including environmental enrichment (Tsai et al, 2006), and
that local ethical review will precede any experimental animal
studies. In addition, these guidelines should be used in conjunc-
tion with appropriate national legislation: UK Animals
(Scientific Procedures) Act 1986; USA Institute for Laboratory
Animal Research (ILAR) Guide for the Care and Use of
Laboratory Animals (http://dels.nas.edu/Laboratory); EU web-
page on laboratory animals (http://ec.europa.eu/environment/
chemicals/lab_animals/home_en.htm); Public Health Service
Policy on Humane Care and Use of Laboratory Animals (Office
of Laboratory Animal Welfare, National Institutes of Health,

2002); http://grants.nih.gov/grants/olaw/references/phspol.htm. A
complementary key recent publication, coordinated by the UK’s
National Centre for the Replacement, Refinement and Reduction of
Animals in Research (NC3R), is also recommended (Biotechnology
and Biological Sciences Research Council; Department for
Environment, Food and Rural Affairs; Medical Research Council;
Natural Centre for the Replacement, Refinement and Reduction of
Animals in Research; Natural Environment Research Council;
Wellcome Trust, 2008). We also feel it is important that the public
is made fully aware of the current justification for the use of
animals in cancer research and the genuine concern for their
welfare by researchers involved with their use. To help with this,
a lay summary of the guidelines is also provided on page 1555.
A glossary of terms can be found at the end of this article. Finally,
it is important to emphasise that high standards of animal care and
welfare should be fully consistent with, and helpful to, the conduct
of high-quality cancer research (Osborne et al, 2009).

GENERAL RECOMMENDATIONS

The use of animals raises scientific and ethical challenges. In 1959,
Russell and Burch published The Principles of Humane Experi-
mental Technique in which they stated that all animal experiments
should incorporate, as far as possible, the 3Rs: replacement
(of animals with alternative methods), reduction (in the numbers
of animals used to achieve scientific objectives) and refinement (of
methods to minimise animal suffering) (Russell and Burch, 1959).
These principles underpin the legislation, guidelines and working
practices concerning the use of animals in scientific procedures.
Consideration of the 3Rs must be an integral part of planning
cancer research using animals and the 3Rs need to be implemented
throughout the lifetime of the study. Funding bodies and scientific
journals (Osborne et al, 2009) should encourage scientists to use
humane methods, to supply information on how the principles
of the 3Rs are implemented and to publish improvements in
experimental design and animal models for the benefit of the
research community (www.nc3rs.org.uk/reportingguidelines).
Details on the application of the 3Rs in cancer research are
provided in Box 1 for ease of reference, together with information
on implementation and monitoring in Box 2. Examples of tumour
models, experimental design and procedures are provided
throughout these guidelines. However, it is emphasised that these
are intended to act as a guide only, and each study should be
tailored to the specific experimental objectives.

TUMOUR MODELS

Preclinical cancer studies fall into two broad categories: those using
tumour cell transplantation (Tables 1A and B), and those in which
tumours arise or are induced in the host (Tables 2A and B). The
choice of animal model depends on the scientific question being
investigated, but the mildest possible procedure should always be
used. An example of the type of illustrative aid that can be used to
facilitate the rational choice of appropriate models is shown in
Figure 1. Cellular interactions and immune responses require
immunocompetent animals and syngeneic systems, whereas cancer
development or chemoprevention studies may use transgenic models
or chemically induced tumours. In the case of translational studies
designed, for example, to discover and develop therapies to exploit
oncogenic abnormalities, the tumours should have the appropriate
molecular genetic defect. Furthermore, real-time optical imaging will
require engineered bioluminescent/fluorescent tumour models.

Transplantation tumour models

These normally involve the transplantation of mouse or rat tumour
cells into a host of the same (syngeneic) species and strain. Growth
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of human (xenogeneic) tumour cells can be achieved using
immunodeficient (e.g., nude or SCID) mice to prevent rejection
(Table 1A). Most transplantable tumours are established subcuta-
neously. These subcutaneous (s.c.) tumours are simple to initiate
but may lack relevance in terms of stromal/vascular interactions
and metastasis. More complex models may involve orthotopic
transplantation at appropriate primary sites, or inoculation of
tumour cells through routes which maximise the chance of

metastatic spread (Table 1B). There is an increasing trend to
establish xenograft tumours directly from human cancers, to avoid
artificial selection of cells in tissue culture and changes in gene
expression and phenotype, which this may induce. Such trans-
plants may better model the principal facets of clinical cancer, for
example, maintenance of tumour architecture, heterogeneity,
expression of certain targets and response to therapy (Dong
et al, 2010), but can be less reproducible (especially as primary
grafts) and slower growing than well-established models (Neale
et al, 2008; Rubio-Viqueira and Hidalgo, 2009). Detailed molecular
and genetic characterisation, facilitated by modern high-through-
put technologies (e.g., see http://www.sanger.ac.uk/genetics/CGP),
is now available for human cancer cell lines used for xenografts
(Masters et al, 2001; Park et al, 2010) and is important to
understand the biology of these models and to select the most
appropriate for each study.

Autochthonous tumour models

There are two broad categories: those arising in outbred or
inbred rodents (Table 2A), or those from animals harbouring
genetic changes that alter tumour susceptibility (Table 2B).
Certain mouse or rat strains are susceptible to spontaneous
development of tumours. More commonly, tumours are induced
by chemical carcinogens, radiation, viruses or bacteria. Such
models may mimic some of the aetiological events in human
cancer development; exposure to such agents may induce systemic
effects that are difficult to replicate in genetically engineered
models.

Major advances have been made in the development of sophis-
ticated mouse models of cancer that mimic many of the genetic
and biological characteristics of human malignancies, although the
host genetic background may affect tumour incidence and/or
malignant potential (Lifsted et al, 1998; Winter and Hunter, 2008).
A range of technologies now allows the inducible expression of
oncogenes or inactivation of tumour-suppressor genes in vivo in
a precisely controlled manner in virtually any tissue or cell
type. (Chen et al, 2004; Christophorou et al, 2006; Sharpless and
DePinho, 2006). Such genetically engineered mouse models

Box 1 THE 3Rs:
REPLACEMENT, REDUCTION AND REFINEMENT

Replacement

Absolute replacement techniques avoid the use of animals; relative replacement
techniques include substituting non-vertebrate species

1. Investigate the potential of novel and existing alternative approaches
to animals

2. Use in silico and/or in vitro pre-screens before commencing animal
studies

Reduction

Minimise the number of animals used to achieve specific scientific objectives

1. Ensure that all studies are scientifically robust and apply appropriate
statistical methods to experimental design

2. Reduce experimental variability by conducting studies of animals of
defined health status and, wherever possible, using inbred strains

3. Minimise surplus breeding by avoiding unnecessarily narrow
specifications for animal sex, age and weight

4. Freeze rodent embryos, sperm and cancer cell lines not
immediately required for scientific studies

5. Prevent duplication by making specific strains and genetically
modified lines available throughout the research community

6. Consider use of serial sampling or longitudinal imaging in which
each animal acts as its own control to reduce study group sizes

Refinement

Continual review of improvements in experimental design, techniques and
husbandry to minimise adverse effects and improve welfare

1. Apply all available knowledge to predict adverse effects and ensure
that appropriate humane endpoints are developed and specialist
care is provided, especially when using genetically modified animals
(e.g., immune deficient or tumour-prone strains)

2. Provide animals with an appropriate environment (e.g., nesting
material, shelter for rodents), including sufficient space and
complexity to satisfy their normal species-typical behaviours

3. Undertake pilot studies of unfamiliar tumour cell lines or novel
procedures to establish experimental and humane endpoints

4. Perform post-mortem examinations as a routine part of all pilot
studies and to investigate any unexpected deaths

5. Include appropriate controls to understand individual and combined
effects of tumours and treatments

6. Use anaesthesia and analgesia whenever appropriate. This should
be regularly reviewed by a vet to ensure that contemporary best
practice is followed

7. Consider imaging methods to monitor non-superficial tumour
burden and to aid the timely implementation of humane
endpoints

8. Do not allow animals to become moribund: death as an intentional
endpoint is unacceptable

9. Maintain and share detailed information, on all experimental
procedures, including behaviour of the tumour and host animals under
various conditions

10. Include principal details relating to the use of animals, such as study
design, adverse effects, specialist care and the 3Rs, in all scientific
publications

Box 2 IMPLEMENTATION AND MONITORING

For assurance that best practice is implemented and rigorously applied, practical
guidelines should be clear and readily available, with staff fully engaged and
educated in their use

1. Establish a clear chain of responsibility to ensure that prompt action is
taken where necessary: for example, if the condition of an animal
deteriorates unexpectedly

2. Establish humane endpoints, specialist care, monitoring methods and
criteria for intervention between researchers, veterinary and animal
care staff before initiating studies

3. Ensure that all staff involved in the use and care of animals are aware of
their personal and legal responsibilities, and are trained to recognise
adverse effects and apply humane endpoints

4. Seek additional external expertise where unfamiliar models or
techniques are being introduced

5. Ensure adequate staffing levels are available for the duration of the study,
particularly during crucial periods where additional observations are needed

6. Inspect animals at a frequency determined by the known biology of the
tumour, the effects of any interventions and the clinical status of the
animals

7. Monitor adverse effects, including general signs of welfare and more
detailed indicators appropriate to the specific model and procedures

8. Give all staff appropriate training and professional development
opportunities

9. Provide appropriate supervision of staff and confirm, review and
document competence on a regular basis
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(GEMMs) provide excellent experimental systems to develop a
deeper understanding of cancer biology in vivo and are increas-
ingly being used for preclinical testing of molecularly targeted
therapies, as they depend on or are ‘addicted’ to the specific
molecular abnormalities and biochemical pathways engineered to
drive the malignant process.

Routine use of GEMMs for preclinical testing of anticancer
therapies can be hampered by variable tumour latency, incomplete
penetrance and complicated breeding schemes. The full potential
of such mouse models is yet to be realised and further work
is required to derive maximum benefit for cancer patients from
these initiatives (Frese and Tuveson, 2007). Newer models (e.g.,
exploiting double or multiple genetic abnormalities) have resulted
in enhanced tumorigenicity and metastatic capacity, and some
studies have shown that mouse cancer models with relevant
human gene mutations respond to appropriate targeted therapies
(Politi et al, 2006), and also may develop common secondary
mutations associated with acquired resistance (Politi et al, 2010).
As an example of target validation, reversible, systemic expression
of a dominant-negative mutant Myc oncogene in transgenic
Ras-induced lung carcinoma model caused the tumours to regress,
whereas effects on normal regenerating tissue were well tolerated
and reversible (Soucek et al, 2008). To overcome heterogeneity
issues, transplantation of transgenic tumours can provide
higher throughput models, for example, for testing therapeutics
(Varticovski et al, 2007). Commonly used GEMMs include
mammary carcinomas induced by the viral oncogene polyoma
virus middle T (Guy et al, 1992; Fluck and Haslam, 1996; Marcotte
and Muller, 2008) or by the human or rat Her2/neu oncogene
(Chan et al, 1999; Quaglino et al, 2008), or colon adenomas and
carcinomas induced by inactivation of the adenomatous polyposis
coli (APC) tumour-suppressor gene (Taketo, 2006). Space
constraint does not allow a full description or listing of the many
more sophisticated, patient-like models now available, examples
of which are shown in Table 2B. The reader is referred to the
more complete information available at http://emice.nci.nih.gov/
mouse_models.

A key question that continues to be debated is whether
human cancer xenografts or murine transgenic models best
reflect the human disease in terms of biology and predictions of

efficacy of therapeutic agents (Becher et al, 2006; Dennis,
2006; Garber, 2006; Sausville et al, 2006; Sharpless and DePinho,
2006). Some GEMMs have shown patterns of sensitivity to
chemotherapeutic agents and development of resistance that are
similar to their human tumour counterparts (Rottenberg and
Jonkers, 2008). The predictive value of neither type of model
has been fully established; however, there is agreement that
molecular characterisation of all tumours is required to underpin
the choice of model.

Selection and optimisation of experimental systems

As mentioned, selection of tumour models should be based
on both molecular characteristics, for example, expression or
mutation of a target of interest or other relevant molecular
pathology, either endogenously or through transfection/transgenic
technology, together with desired properties such as the rate
and reproducibility of growth, metastatic potential and chemo-
sensitivity.

Cell line verification and molecular characterisation

Given the frequency of misidentification and cross-contamination
(Nardone, 2007; Lacroix, 2008) it is essential that all cell lines are
rigorously checked for their provenance and genetic identity
(Parodi et al, 2002; Yoshino et al, 2006). It is also important that
cell lines are free from contamination with infectious agents such
as mycoplasma, which can influence their biological behaviour
and present a risk to handlers and animals (Ishikawa et al, 2006;
Sung et al, 2006; Harlin and Gajewski, 2008). Regardless of
origin, detailed characterisation of tumours should be performed
and checked periodically to ensure that desired properties are
maintained and are commensurate with the molecular pathology
of the corresponding human malignancy (Santarius et al, 2010).
A thorough literature review should establish their reported
tumorigenic and immunogenic properties, with special attention
paid to the selection of the correct host animal strain and sub-
strain. Residual immune responses to xenografted tumours in
nude/SCID mice may occur and the sex of the host should be

Table 1A Transplantable tumour models

Examples of models Advantages Disadvantages

Syngeneic MC26 colon cancer in BALB/c mice
(Alsheikhly et al, 2004)

B16 melanoma in C57/Bl mice
(Rusciano et al, 1994)

4T1 mammary carcinoma in BALB/c mice
(Kim et al, 2009)

Conventional rodents and normal housing

Covers wide range of tumour types

Models immune and stromal interactions

Tend to be aggressive and grow over a short
time frame

Not applicable if investigating human-specific
parameters

The genetics and histology of tumours may
not reflect the human situation

Xenogeneic HCT116 colon cancer in athymic mice
(Huxham et al, 2004)

PC3 prostate cancer in athymic mice
(Patel et al, 2002)

Systemic leukaemias in irradiated NOD/SCID
mice (Liem et al, 2004; Lock et al, 2005)

GFP transgenic mice to enhance visualisation
of tumour–host interactions (Yang et al, 2004)

Luciferase-expressing cancer cells for
bioluminescent imaging (Dickson et al, 2007;
Comstock et al, 2009; Shibata et al, 2009)

Allows direct investigation of human cells

Human cancer cell lines are increasingly being
characterised by genetic and other molecular
techniques (Ihle et al, 2009; Bignell et al, 2010)

Can be an established cell line or human
primary tissue (Neale et al, 2008;
Rubio-Viqueira and Hidalgo, 2009)

Amenable for immune reconstitution

Can be grown s.c. or orthotopically

Requires genetically immunodeficient
(nu/nu or SCID) animals

Requires sterile isolation and ACDP
containment level-II

Genetically modified cells will require
ACGM containment

May not be suitable for use with agents
modifying the immune system or where
cellular interactions are being investigated

Abbreviations: ACDP¼Advisory Committee on Dangerous Pathogens; ACGM¼Advisory Committee on Genetic Modification; GFP¼ green fluorescent protein; NOD¼ non-
obese diabetic; s.c.¼ subcutaneous; SCID¼ severe combined immunodeficient.
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Table 1B Transplantation models used for therapeutic studies

Transplantation site Notes and examples of models Advantages Disadvantages

Subcutaneous tumour
transplantation

A high % of established lines will grow
at this site

Simplest model for routine evaluation
of anticancer agents

Uses cancer cells or tissue

Simple administration with anaesthetic
only required for tissue transplantation

Allows continuous monitoring

Facilitates the use of bilateral
transplantation after pilot studies

Ectopic site for most tumours

Metastases rarely develop from
s.c. tumour xenografts

May be poorly vascularised with necrotic
centres

Tumour cells within
hollow fibres

Amenable for use with a wide range of
cell lines (Decker et al, 2004)

Allows multiple cell lines to be
implanted for simultaneous assessment

Useful for human cell lines that fail
to grow as xenografts

Short-term assay requiring ex vivo
end-stage analysis

Provides a quick assessment of drug efficacy
and may predict xenograft response

Careful scoring system required

Lack of vasculature may miss ‘indirect’
effects or access issues

Inflammation around fibres can affect
responses

Variation in properties of fibres

Possibility of paracrine effects if multiple
cell lines implanted in same animal

Experimental metastasis
(site of spread)

Intravenous
(primarily lung)

3DC13B lymphoma (Golay et al, 2006)

M24met melanoma (Becker et al, 1996)

A549 NSCLC (Kennel et al, 1999)

Lewis lung 3LL (Li et al, 2001)

Most cells injected i.v. colonise lung

Some (notably lymphoid tumours)
may colonise other organs

Models end-stage of metastasis in
a controlled manner

Simple model to establish

Cells may be tagged for imaging

Bolus injection of cells does not mimic
natural dissemination and the ‘conditioning’
effect of primary tumour growth

Does not model the full spectrum
of metastatic cascade

Difficult to monitor and quantify accurately
without imaging

Pilot studies required to establish incidence
and growth kinetics

Intra-peritoneal-(ascites
and peritoneal/
omentum-associated
tumours)

GW-39 colon (Sharkey et al, 1991)

MGLVA1 gastric (Watson et al, 1999b)

OVCAR3 ovarian (Zavaleta et al, 2008)

Mimics late-stage ovarian cancer and
carcinomatosis associated with some
abdominal cancers

Difficult to quantify

Intra-tibiala (bone) ARCaP prostate (Zhau et al, 2000) Mimics bone tumour growth seen
with myeloma or prostate and breast
cancer metastases

Does not mimic natural tumour
dissemination

Risk of infection and pain

Requires imaging

Intra-cardiaca (bone) MDA MB 231 breast (Serganova et al, 2009)

A375 melanoma (Nakai et al, 1992)
Mat Ly-lu prostate (Blouin et al, 2008)

To some extent mimics the
dissemination phase of metastasis

Requires advanced surgical technique

Risky procedure requiring particular care

Only suitable for a limited number of
cell lines

Intra-portal
vein (liver, nodes)

LS174T colon (Mahteme et al, 1998) Localises tumour cells to liver

Appropriate for colon, pancreatic
and breast cancers

Requires advanced surgical technique to
avoid cell leakage into peritoneal cavity

Intrasplenic (liver) WiDR colon (Miyazaki et al, 1999) Easier procedure than mesenteric
vein or intraportal cell inoculation

Local growth in spleen may complicate the
interpretation of results unless splenectomy
is performed

Orthotopic and
spontaneous
metastasis models
(sites of metastasis)

Intra-caecal/lymphoid
follicle (liver)

Intra-dermal
(lung/nodes/liver)

Mammary fat pad
(lungs/nodes/brain)

TK-3,-4,-9 colon (Tanaka et al, 1995)

NC65 renal (Nakatsugawa et al, 1999)
A-07melanoma (Graff et al, 2005)

MDA-MB-231 breast (Serganova et al, 2009)
4T1 breast (murine) (Mitra et al, 2006)

Relevant stromal/vascular cell interactions

Models the full metastatic cascade

Certain models may involve lymph
node spread

Cells may be genetically tagged to
allow real-time imaging
Chemosensitivity more relevant

Most require delicate surgical procedures

Risk of local tumour spread

Risk of infection

Pilot studies must be used to determine
the time frame of disease events
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considered, particularly for hormone-responsive tumours such as
breast and prostate.

Pilot studies and optimisation

Pilot tumour growth studies using small numbers of animals
(5–10) are recommended to establish that patterns of local and
metastatic growth are reproducible. They also show any adverse
effects associated with tumour progression and enable humane
endpoints to be identified. The data derived should feed into group
numbers used for definitive studies (e.g., therapy experiments) in
order for experimental time frames and statistically significant
endpoints to be established. Use of a relevant positive control
treatment may be useful at this stage to ensure that tumour growth/
responsiveness is as expected. This can be dictated by a variety of
factors, including the site of growth. Subcutaneous tumours may
grow rapidly and some are prone to developing haemorrhagic areas,
which can cause rapid expansion and ulceration (e.g., human A2780
ovarian carcinoma and AR42J pancreatic carcinoma xenografts).

For tumours growing as a suspension in the peritoneal cavity, it is
important to establish clear criteria to ensure that studies are
terminated before animal welfare is compromised. This site is only
appropriate for models where ascites is a feature of the natural
progression of the human cancer (e.g., ovarian carcinoma, peritoneal
mesothelioma, gastrointestinaI tumour carcinomatosis). Similar
criteria apply to other sensitive specialised sites such as muscle or
brain. For metastatic models, pilot experiments should define the
extent and time course of dissemination to internal organs.

Pilot studies should include sequential analysis of animals to
determine the time course required to achieve scientific goals.
Termination of studies at the earliest possible point will minimise
adverse effects on the animal. Where possible, use of biomarkers
(e.g., serum levels of prostate-specific antigen, PSA) and real-time

imaging are highly recommended. It is also possible to measure
circulating tumour cells using fluorescence and PCR-based tech-
niques (Glinskii et al, 2003; Komatsubara et al, 2005). For
spontaneously arising tumours, including those in transgenic
animals, particular attention should be paid to the time course of
tumour development and issues relating to the development of
multiple tumours. Progression may be unpredictable and involve
rapid dissemination and subsequent deterioration in clinical
condition, in which case careful and frequent monitoring is required.

Refinement and welfare issues

Subcutaneous implantation of tumour material should use a trochar
or surgical formation of a small s.c. pocket. Appropriate anaesthetics
must be used and post-implantation analgesia is also strongly
recommended. Veterinary advice should be sought to ensure that
the agents selected reflect contemporary best practice. Anaesthesia/
analgesia is also required for implantation of ‘hollow fibres’ or slow
release devices such as osmotic mini-pumps. Hormone pellets
(oestrogen/testosterone) may be required to support hormone-
dependent tumours, but first-time use in a particular strain will
require pilot experiments with different doses/exposures to assess
tolerance, especially with oestrogen pellets where urinary tract side
effects may be encountered (Pearse et al, 2009).

For injection of cell suspensions, the minimum number of cells
in the smallest volume should be used, consistent with the
properties of the tumour. For s.c. sites, 1–5 million cells in 100 ml
is typical. For orthotopic sites, this should be reduced to avoid
excessive tissue damage or leakage (e.g., 50 000 cells in 30 ml into
the prostate, or 10–50 000 cells in 5 ml into the brain).
Intramuscular tumours in the leg can affect mobility, and this
site should only be used if there is special justification (e.g., for
tumours which naturally develop in this tissue). Similarly, footpad

Table 1B (Continued )

Transplantation site Notes and examples of models Advantages Disadvantages

Muscle layer of
peritoneal cavity
(lymph nodes/
lungs/liver)

Bladder walla (lung)

Liver

Pancreas

Stomach

Braina

Kidney capsule
(lung/liver)

Prostate (nodes, bone)

AP5LV colon (Watson et al, 1999a)
UCRU-BL-17 clone 28B bladder
(Russell et al, 1991)

HepG2 Hepatocellular (Han et al, 2005)

Morris hepatoma (rat) (Hirayama et al, 2006)

PANC-1 (Harris et al, 2004)

SGC-7901 gastric (Zhu et al, 2007)

C6 glioma (rat) (Takeda and Diksic, 1999)
T9 glioma (rat) (Graf et al, 2005)

U87MG, U251 gliomas (Radaelli et al, 2009)

RCC renal (Zisman et al, 2003)
RENCA (mouse) (Verheul et al, 2007)

PC3 prostate (Patel et al, 2002)

Human tumour micro-environment
modelled by co-transplantation with
human stromal cells

Spontaneous metastasis models may
facilitate simultaneous investigation of
primary and secondary lesions

End-stage quantification may be difficult
if real-time imaging is not used

Immune reconstitution Primary leukaemic cells (Nijmeijer et al, 2001)
A20 B-lymphocytic (murine) (Glass et al,
1996)

Allows relevant stromal/immune
interactions

Immune reconstitution requires
whole-body irradiation

Matrigel plug assays for
testing antiangiogenic
agents

Amenable for use with a range of endothelial
or tumour cell lines (Kragh et al, 2003)

Short-term assay allowing ex vivo analysis
Requires small doses of compounds
Allows quantitative (endpoint) analysis of
angiogenesis

Subcutaneous system
End-stage analysis
May not fully mimic tumour angiogenesis

Dorsal skin-fold
chamber

Amenable for use with a range of endothelial
or tumour cell lines (Koehl et al, 2009)

Enables real-time visualisation of
angiogenesis

Highly invasive procedure. Risk of
inflammation/infection

Abbreviation: i.v.¼ intravenously. aThese models are specialised and not recommended for routine use. All examples involve human cell lines unless indicated as rodent.

Guidelines for the welfare and use of animals in cancer research

P Workman et al

1560

British Journal of Cancer (2010) 102(11), 1555 – 1577 & 2010 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



injection, which has been traditionally used to potentiate
lymphatic dissemination, is unacceptable without exceptional
scientific justification and should then only involve a single paw.

Surgical removal of a primary tumour may be justified, for
example, from s.c. sites, mammary fat pad or removal of the spleen
following intrasplenic injection, to allow time for outgrowth of any
secondary deposits. Surgery must be performed using sterile
techniques with appropriate post-operative monitoring and
control of any pain and inflammation/infection.

Cell lines should be checked regularly for contaminating
microorganisms to avoid infection of host animals. This is
especially important if tumours are routinely passaged between
animals, which may be justified for those that are difficult to
establish from cell cultures. Asymptomatic infection of experi-
mental animals may affect tumour properties, for example,
metastasis (Rodriguez-Cuesta et al, 2005). Procedures can be used
to improve tumour take rate. For example, moderate doses of
whole-body irradiation may further enhance engraftment of
tumour cells in athymic mice (Baersch et al, 1997; Nijmeijer
et al, 2001; Li et al, 2006), although the added stress and risk to the
animal must be considered. Co-administration of human tumour
cells with allogeneic bone marrow transplantation may reduce
graft-vs-host activity but preserve graft-vs-tumour effects in
allogeneic leukaemia models (Prigozhina et al, 2002; Giver et al,
2004).

Transplanted tumours (especially xenografts) may not develop with
an incidence, growth rate or malignant potential required; however
this can often be enhanced by selection of tumorigenic/metastatic
variants (Bruns et al, 1999; Nguyen et al, 2009a). In addition,
co-injection of tumour cells with extracellular matrix proteins and/or
angiogenic factors (Collado et al, 2007), cancer-associated fibroblasts
(Noel et al, 1993; Orimo et al, 2005) or mesenchymal stem cells
(Karnoub et al, 2007; Spaeth et al, 2009) can increase tumorigenicity,
better recapitulate the human tumour microenvironment and
enhance metastatic potential. Cells may be transfected with
fluorescent or bioluminescent markers allowing serial imaging of
internal tumours/metastatic spread. However, such tagged cell lines
should be profiled to establish that their biological characteristics are
unchanged and consideration should be given to the dependence of
luminescence/fluorescence on factors in the tumour microenviron-
ment, for example. molecular oxygenation, necrosis, or ascites fluid
from peritoneal tumours (Condeelis and Segall, 2003).

THERAPY

Preclinical discovery and development of therapeutics

There is a concerted effort to identify and develop small-molecule
drugs or biopharmaceuticals (e.g., antibodies, protein therapeutics,

Table 2A Primary tumour models

Model type Examples of models Advantages Disadvantages

Chemically-induced
tumours

Dimethyl hydrazine – gastric cancer
(Watanabe et al, 1999)

Azoxymethane – colon cancer (Hirose et al, 2004)

Diethylnitrosamine – heptaocellular carcinoma
(Ha et al, 2001)

Dimethyl benzanthracene – breast cancer
(Hawariah and Stanslas, 1998)

N-acetylcysteine – squamous oesophageal
carcinoma (Balansky et al, 2002)

Dimethylbenzanthracene/
tetradecanoyl phorbol acetate (TPA)
– skin cancer (Johansen et al, 2009)

Model the full spectrum of carcinogenic
events

Useful in chemoprevention studies

Low incidence and heterogeneous
tumour development

Safety aspects associated with use of
carcinogens – may need to house
animals in isolator

Long time frame for tumour
development

Continuous monitoring not feasible

Often highly immunogenic

Radiation-induced
tumours

Ultraviolet light (Ahsan et al, 2005;
De Fabo, 2006; El-Abaseri and Hansen, 2007)

Models non-melanoma (using UVA) and
melanoma (UVB) skin cancer

Useful for prevention (e.g.. sunscreen) studies

Requires hairless mice

Inflammation-
induced tumours

Helicobacter pylori-induced gastric
cancer in gerbils (Zheng et al, 2004)

Use of conventional rodents to facilitate
the involvement of the full spectrum of
immune mediators

Models malignant progression and amenable
for use of chemopreventive agents

Limited availability of models

Long time frame and variability
in tumour development

Surgically-induced
tumours

Oesophago-gastroduodenal anastomosis model
of oesophageal carcinogenesis (Chen et al, 1999)

Can model malignant progression or
metastatic spread

High level of skill required for initiation

Incidence may not be 100%

Accurate quantification can be difficult
unless using real-time imaging

Spontaneous
tumours,
sometimes with
viral/genetic
component

T138 mice and mammary carcinoma
(Wood et al, 1992; Nordsmark et al, 1996)

Cotton rats and neuroendocrine gastrointestinal
tumours (Martinsen et al, 2003)

Eker rat model of tuberous sclerosis
(Kenerson et al, 2005)

Develop cancer without any intervention

Conventional rodents, therefore fully
immunocompetent

Limited tumour types and strains

Variability in the time frame of tumour
development
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vaccines, gene therapy) targeted against cancer cells or associated
host cells (Sawyers, 2004; Collins and Workman, 2006; Workman
and de Bono, 2008). A representative ‘test cascade’ for discovering
new small-molecule inhibitors of cancer targets is shown in Figure 2.
As a consequence of extensive in vitro testing, comparatively small
numbers of prioritised compounds progress to examination in vivo
(Collins and Workman, 2006). In vivo studies use sequential,

discriminatory tests to prioritise compounds at each stage. Different
tests may need to be applied to biopharmaceuticals, such as
antibodies and vaccines, as they may work by recruiting host
effectors (e.g., cytotoxic leukocytes). Epitope specificity can also
require the development of an antibody or vaccine initially using
anti-rodent reagents (before switching to the clinical form) or use of
a genetically modified mouse model. In addition, agents directed

Table 2B Genetically engineered mouse models (GEMMs)

Examples of
models

Spectrum of
tumours

Spectrum of tumours
in humans

Recent genetic
modifications

Spectrum of tumours
in modified models References

Rb Brain, pituitary Retinoblastoma,
osteosarcoma,
medulloblastoma

Additional loss of p107,
p130

Retinoblastoma (Robanus-Maandag
et al, 1998)

Trp53 Osteosarcoma,
lymphoma, soft-tissue
sarcoma, germ cell
tumours

Breast carcinoma, brain,
sarcomas, leukaemia,
endocrine

Additional loss of Terc
Trp53(ER)TAM

Breast and other
carcinomas, germ-cell
tumours

(Artandi et al, 2000)
(Christophorou et al,
2005)

Apc (ApcMIN,
ApcD716,
ApcD580)

Multiple polyps in small
intestine

Polyps in colon progressing
to carcinomas

Conditional colon-specific
inactivation

Polyps in colon
Mammary carcinoma

(Shibata et al, 1997)

Ink4a Fibrosarcoma, lymphoma,
squamous-cell carcinoma

Familial melanoma, sporadic
pancreatic, brain tumours

Crossed with Arf+/� mice Metastatic melanoma,
sarcoma, carcinoma,
lymphoma

(Krimpenfort et al,
2001)

Brca1 No tumour susceptibility Breast ovary Conditional mammary-
specific inactivation of Brca1

Mammary tumours (Xu et al, 1999)

Brca2 No tumour susceptibility Breast, ovary Conditional mammary-
specific inactivation of
Brca2 and Trp53

Mammary tumours (Jonkers et al, 2001)

Nf1 Pheochromocytoma,
myeloid leukaemia

Neural-crest-derived benign
neurofibroma and malignant
fibrosarcoma

Additional loss of Trp53 Neural-crest-derived
malignant glioblastoma

(Reilly et al, 2000)

Nf2 Osteosarcoma,
fibrosarcoma, lung
adenocarcinoma,
mepatocellular carcinoma

Schwannomas,
meningiomas,
ependymomas, gliomas

Schwann-cell precursor-
specific ablation of Nf2

Schwannomas (Giovannini et al, 2000)

K-rasG12D Lung adenoma,
adenocarcinoma
PanIN

NA Mutant Trp53
Pancreas-specific
K-rasG12D+Ink4a/Arf
deficiency or combined
withTrp53R172H

Metastatic lung cancer
Metastatic pancreatic
cancer

(Johnson et al, 2001)
(Aguirre et al, 2003;
Hingorani et al, 2005)

AML1/ETO or
MLL fusion
proteins

AML AML (Zuber et al, 2009)

MYCN Neuroblastoma,

Rhabdomyosarcoma,
medulloblastoma

Neuroblastoma,

Rhabdomyosarcoma,
medulloblastoma

TH-driven overexpression
in neural crest

(Weiss et al, 1997)

MYCC Pancreatic adenoma,
melanoma, lymphoma,
AML, breast

Pancreatic adenoma,
melanoma, lymphoma,
AML, breast

BCL-XL crosses
Lck overexpression
Eu-Tta-c-myc
MMTV-c-myc

(Pelengaris et al, 1999)
(Felsher and Bishop,
1999)
(Sinn et al, 1987)

Ptc1 Medulloblastoma Trp53-knockout crosses (Wetmore et al, 2001)

T-antigen Pancreatic
adenocarcinoma

RIP1-Tag2 driven
overexpression in pancreatic
islets

(Bergers et al, 1999)

PTEN Breast, endometrial,
glioblastoma, prostate,
and thyroid carcinoma,
Cowden syndrome,
hamartomas, urothelial
tumours of renal pelvis

Breast, endometrial,
glioblastoma, prostate, and
thyroid carcinoma, Cowden
syndrome, hamartomas,
urothelial tumours of renal
pelvis

(Stambolic, 2000;
Qian, 2009)

Abbreviations: AML¼ acute myeloid leukaemia; NA¼ not available; PanIN, pancreatic intraepithelial neoplasia.
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STAGE 3:

TUMOUR
MICRO-
ENVIRONMENT 

STAGE 2: 

ANIMAL
HOST 

STAGE 4: 

TUMOUR
STATUS 

STAGE 5:

TUMOUR
EVALUATION  

STAGE 7:

ENDPOINT
ANALYSES 

STAGE 6:

DOSING
REGIMEN 

STAGE 1: 

TUMOUR
TYPE 

Defined by
molecular status 

Defined by
in vitro studies 

Human tumour
xenograft

Immunodeprived
animal 

Immunocompetent
syngeneic host 

Animal tumour Specific genetic
modification 

Transgenic/
engineered host

Transplanted Autochthonous 

Relevant Irrelevant

Subcutaneous
transplant 

Orthotopic site
Stromal/host cell
co-inoculation 

Pre-cancerous
lesion

Early stage
tumour 

Established or
invasive tumour

Metastasis

Spontaneous Experimental

Internal tumours

Superficial
tumours 

Imaging
techniques

Blood/serum
biomarkers 

Palpation,
clinical signs

Caliper
measurements 

Based on
clinical schedules 

Based on existing
appropriate animal data 

Based on mechanism
of action, PK, PD, tolerability 

Tumour volume
and weight

Ex vivo
clonogenicity

Regrowth delay,
time to progression

Efficacy
biomarkers 

Body fluids, tumour,
normal tissues 

Body weight, condition,
clinical signs

Toxicity
biomarkers 

Defined  by
clinical tumour type  

Figure 1 An illustrative process for tumour model selection and use. This representative schema provides an illustration of factors to be considered when
designing an animal study. In this particular example, all the factors listed at a given stage (and potentially others) should be considered before moving down,
stepwise, to the next stage. Here, an initial consideration is that the choice of model may be based on the relevant molecular status, clinical tumour type or
in vitro studies. At the next stage, the animal host will be dictated by the need for, say, a human tumour xenograft versus a genetically engineered mouse
model, which have advantages discussed in the text. Considerations of tumour environment and site then follow, after which, in therapy studies, are dosing
and endpoint aspects. Note that this schema is illustrative and not prescriptive and that each study must be tailored to the specific scientific question and
experimental objectives, with appropriate humane endpoints always applied and pilot studies carried out as needed.
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against the tumour microenvironment (e.g., angiogenesis, tumour-
promoting stromal or inflammatory cells) will require appro-
priate specialised assays. A range of technical platforms are used
preclinically to define responses to therapy, the most informative of
which are adopted for use in patients (Figure 3). Careful assessment
of a therapy’s safety profile (outside the scope of this review) is also
required for regulatory submission.

Defining tolerable doses for efficacy studies

An investigational treatment should be examined at a potential
therapeutic dose level and using a relevant dosing regimen that
covers the longest duration anticipated. These parameters can, for
example, be estimated from consideration of mechanism of action,
in vitro potency, pharmacokinetics, protein binding and pharmaco-
dynamic biomarker data. Studies typically use two mice per dose
level with a doubling dose-escalation or dose-halving de-escalation
design. For studies involving a single dosing event, an interval of
24 h should be used before an alternative dose level is examined, to
allow any acute adverse effects to be seen. For more chronic
administration schedules (e.g., daily for 21–28 days) this interval
should be at least 5 days. Animals should be examined at least twice
daily (see humane endpoints below). Note that presence of a tumour
may reduce host tolerance to therapy. Studies of mice may be used
to predict dose requirements in other species through allometric
scaling of pharmacokinetic parameters (Freireich et al, 1966).

Combination studies

There is a strong rationale to study combinations of agents in vivo
to guide clinical studies. Relevant prior in vitro studies such as
Combination Index or isobologram analyses to discriminate

additive, synergistic or antagonistic interactions should be completed
to guide the selection of combinations and schedules. Compounds
are added to tumour cells in culture over a range of concentrations,
alone or in combination, and the changes in sensitivity are observed.
Compounds may also be added sequentially as the order of
administration may significantly influence responses (Chou, 2006).
Care needs to be taken with in vivo studies in addressing the choice
of individual drug doses and scheduling, particularly if overlapping
toxicities are likely. Pilot experiments must assess tolerability (see
above), and pharmacokinetic data (see below) should also be
generated to determine whether interpretation of efficacy data is
affected by pharmacokinetic interactions (Siim et al, 2003).

Pharmacokinetic studies

In vitro and in silico methods are useful to predict absorption,
distribution, metabolism and elimination (ADME) properties and
to help prioritise compounds for evaluation in animals (Table 3;
Singh, 2006). However, at present such methods are unable to
predict accurately the full pharmacokinetic profile of an agent.
Pharmacokinetic studies should use a validated and sufficiently
sensitive detection method, ideally avoiding the need to pool
separate blood samples, thereby minimising animal usage. Typical
experiments on mice use a single dose and 5– 8 time points (2–3
mice per point) over 24– 48 h with small molecules (usually
administered p.o., i.v. or i.p. at doses of 0.5– 100 mg kg�1) and over
1–21 days with biopharmaceuticals (administered i.v., i.p. or s.c. at
doses ranging from 10 to 1000mg per mouse).

More recently, repeat sampling of small volumes of blood from a
superficial vein in mice over a series of time points has been
established to reduce animal numbers. This can be employed
either for isolation of plasma and analysis by sensitive liquid

Number of compounds 
tested

Small-molecule compound collection

Automated high-throughput screening

Target inhibition in tumour cells

Enzyme/cellular selectivity and phenotypic assays

PK (including ‘cassette dosing’)

Tolerability

PK/PD (tumour and normal tissue surrogates)

Disease model efficacy

Safety studies

Clinical development in man

In vitro pharmacology

In vivo pharmacology

≤ 5 x 106

≤ 106

≤ 103

≤ 102

≤ 102

2–4

4–8

8–40

10–50

1

X-ray crystallography,
NMR, affinity assays,

pharmacophore models

Iterative medicinal
chemistry

In vitro metabolism,
permeability, CYP450,
solubility, lipophilicity,
protein binding, etc

Figure 2 Example of a drug discovery test cascade for identifying small-molecule antitumour drugs. A representative test cascade for identifying a
potential small-molecule drug against a given target is shown. A subset of a compound library is initially screened vs the target in vitro, in recombinant protein
or cellular assays, using high-throughput automation to identify ‘hits’. Subsequent leads are examined in more detail by assessing their effect on downstream
molecular events in cells and their selectivity vs other proteins. A battery of additional in vitro tests is also used for measurement or prediction of physical
properties and pharmacokinetic parameters. Only compounds with a promising balance of features are progressed to in vivo testing, usually in mice.
Pharmacokinetic (PK) studies, used to understand drug exposure, may initially involve co-inoculation of low doses of compounds (‘cassette dosing’) to
minimise animal usage. The tolerability of leads with favourable PK is then assessed at higher doses, before evaluating their pharmacodynamic (PD) effect on
tumour and normal tissues at well-tolerated doses. Compounds that do not meet the anticipated level of performance at any stage may result in subsequent
rounds of iterative medicinal chemistry to generate improved leads. Selected leads are progressed to efficacy testing to determine the link between target
inhibition and the effect on tumour growth or spread (metastasis). Safety studies on late-stage leads are also required before a candidate drug can be
selected for examination in cancer patients (not covered here). The application of the test cascade means that compounds are filtered by the earlier stage
assays so that a smaller number of compounds, and only those of higher quality, are taken into later stage in vivo assays in animals.
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chromatography –mass spectrometry/mass spectrometry (LC/MS-
MS or tandem MS) instrumentation (Abatan et al, 2008), or by
spotting microlitre volumes of whole blood onto specialised paper
cards, which are then dried and extracted before analysis (Barfield
et al, 2008). In rats, a 5– 8 time-point pharmacokinetic profile may
be generated using 2–6 animals in total, through repeated blood
sampling. ‘Cassette dosing’, which involves administration of low
doses of compound mixtures, should also be considered initially as
this can reduce animal usage (Watanabe et al, 2006; Smith et al,
2007). Wherever possible, computational compartmental kinetic
modelling should be used to predict optimal doses or multiple
dosing protocols, to facilitate more limited sampling (Rowland and

Tozer, 1995). It is noteworthy that the plasma half-life of mono-
clonal antibodies is frequently extended in immunocompromised
mice, which are deficient in IgG production (Bazin et al, 1994).

Pharmacodynamic biomarkers

Initial studies of investigational therapies using tumour-bearing
animals should aim to determine whether the target, or an
appropriate downstream pathway or phenotype, is modulated by
using suitably validated pharmacodynamic biomarkers (Collins
and Workman, 2006). Typically, animals are humanely killed
at intervals to determine the extent and duration of
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Figure 3 Examples of technologies used in animals for therapeutic cancer research. In vivo tumour models have an essential role in the development of
new cancer medicines, enabling the temporal and quantitative effects of treatment to be examined on tumour and normal tissues in the intact organism.
Methods used include those to examine (clockwise from far left) molecular determinants of sensitivity to treatment (initially in vitro, corroborated in vivo)
such as (a) gene mutations by sequencing, or (b) gene amplification by fluorescent in situ hybridisation; detection of target phospho-epitopes and their
inhibition in tumour tissue as determined by: (c) immunohistochemistry or (d) western blotting of cell lysates; (e) tumour vascular density and maturation
by fluorescent immunohistochemistry; (f) tumour mRNA expression by gene array analysis with hierarchical clustering of information; (g) imaging
techniques such as dynamic contrast-enhanced MRI to measure tumour haemodynamics; and (h) pharmacokinetic analysis of drug concentrations in
plasma by mass spectrometry.
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pharmacodynamic changes and to investigate biomarkers in
tumour and normal tissues (e.g., blood or skin) that may be
relevant to clinical development (Banerji et al, 2005). In vaccine
studies, responses are assessed by changes in immune status,

including evidence of tumour-infiltrating leukocytes by immuno-
histochemistry, and specific cellular or humoral immunity
(Gajewski, 2000). It should be possible to use much smaller group
sizes of 3– 5 in pharmacodynamic studies in comparison to those
in efficacy studies (see below). Simultaneous measurement of drug
concentrations and mechanistic biomarkers is recommended to
reduce animal numbers and establish a pharmacokinetic –
pharmacodynamic relationship. Judicious application of such
studies in a drug discovery test cascade should be used to
prioritise agents before entry into efficacy studies.

Efficacy determinations

All relevant information should be used to guide the design
of tumour efficacy studies. Such studies generally involve
examination of treatment effects over a 2- to 4-week period and
establish how the therapeutic response relates to pharmacokinetic
and pharmacodynamic parameters. Typically, with treatments
delivered by an appropriate route of administration (Table 4), res-
ponse is determined in 6– 10 animals per study group (vs a control
group) either by direct twice-weekly calliper measurement of
superficial tumours (Kelland, 2004), counting lung or liver
metastases ex vivo, or using imaging methodologies (Edinger
et al, 2002; Hoffman and Yang, 2005; Brindle, 2008; McCann et al,
2009; Yang et al, 2009). Alternatively, post-treatment excision of
tumours for in vitro determination of clonogenic survival, or
determination of the dose required to inhibit tumour growth by
50% (tumour control dose-TCD50) may be appropriate (see
Radiation therapy section below). Methods are available to
determine sample sizes for single- and combination-agent studies
and to allow for incomplete data sets (Tan et al, 2005). For certain
targets, alternative, surrogate in vivo efficacy models in non-
tumour-bearing animals may be used, such as assessment of anti-
oestrogenic activity by determining the effect on hypothalamic
function (Kato et al, 1968).

Table 4 Maximum volumes to be administered on each occasion

Route Mouse Rat

Intravenous, bolus injection 10 ml kg�1 5 ml kg�1

Intra-arterial, bolus injection NA 0.1 ml

Intraperitoneal, bolus injection 20 ml kg�1a

10 ml kg�1

Subcutaneous, bolus injection 20 ml kg�1a,b

10 ml kg�1

Intramuscular, bolus injection 0.05 ml per site, using contralateral
limbs for sequential doses or 0.1 ml on
one occasion only,

0.1 ml per site, using contralateral limbs
for sequential doses or 0.2 ml on one
occasion only

Intradermal, bolus injection 0.05 ml per siteb 0.1 ml per siteb

Oral, by gavage 20 ml kg�1, or 50 ml kg�1 on one
occasion only

20 ml kg�1, or 30 ml kg�1 on one
occasion only

Slow intravenous/arterial injection 0.8 ml over 2 min 5 ml over 2 min

Constant intravenous infusion 0.04 ml per min 0.2 ml per minc

Constant intra-arterial infusion NA 0.1 ml per min

Constant intraperitoneal infusion 0.04 ml per mind 0.2 ml per mind

Intratumour, bolus injection 0.1 ml 0.1 ml

Abbreviation: NA¼ not applicable. The volumes used should be the minimum practicable depending on the solubility of the agent and accuracy of administration, and should be
adjusted according to individual animal body weights at each dosing. Multiple administrations should typically be separated by a period of 6–8 h. The frequency of dosing should
be balanced against the duration of the treatment schedule such that the total number of doses administered is not excessive (Diehl et al, 2001). aExceptionally, compounds,
which are poorly soluble in water may be administered as a weak solution in a volume of up to 50 ml kg�1 in the mouse, to avoid the use of organic solvents or detergents.
Additionally, 5% dextrose/saline may be injected in volumes up to 50 ml kg�1 for rehydration of mice after surgery. Similar increases in volume can be applied to rats. bMaximum
of two sites per animal. cMaximum rate of 2.5 ml min�1 should be used for total infusion times o1 min. dWhere agents need to be administered over several days or weeks,
s.c. or i.p. osmotic pumps may be used, which may be left in position for up to 4 weeks.

Table 3 Some in vitro assays for pharmacokinetic/ADME properties

Property Assays

Chemical and physical properties In silico predictions or in vitro
measurements of logP (Mannhold et al,
2009), logD (Bruneau and McElroy,
2006; Dohta et al, 2007), pKa (Lee et al,
2007) and solubility (Colclough et al,
2008; Du-Cuny et al, 2008)

Metabolism Mouse, rat, human liver
microsomes, hepatocytes, S9
incubations, UGT assays
(Houston and Carlile, 1997;
Riley et al, 2002)

Passive diffusion/cell uptake PAMPA (Ottaviani et al, 2006)

Cell and gut permeability predictions Caco-2 cells (Artursson et al, 2001)

Blood–brain barrier permeability
predictions

hCMEC/D3 cells (Poller et al, 2008)

Drug–drug interactions
(e.g., CYP450)

Human liver microsomes,
hepatocytes, CYP enzyme screens
(Masimirembwa et al, 2001)

Protein binding Measurement by dialysis or
ultrafiltration (Howard et al, 2010)

Abbreviations: ADME¼ absorption, distribution, metabolism and elimination;
CYP450¼ cytochrome-P450; PAMPA¼ parallel artificial membrane permeability
assay; UGT¼ uridine diphospho (UDP)-glucuronosyltransferase.
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Administration of experimental agents

Various sources are available for advice on well-tolerated injection
volumes and recommended administration schedules. It is
important to note that, from an animal welfare point of view,
frequency and duration of dosing are as important as the volume
and composition of the injected solution. Some commonly used
examples are given in Table 4 and the following references: Diehl
et al (2001); Morton et al (2001). More frequent dosing would need
to be justified by pharmacokinetic or pharmacodynamic data. As
an illustration of standard procedures, for oral/i.p. or i.v. dosing in
mice, volumes of 10 and 5 ml kg�1, respectively (equating to 200
and 100 ml for a 20 g mouse), are widely accepted. However, the
smallest volume that can be accurately and safely administered
must always be used.

Where possible, compounds should be administered in an
aqueous solution (sterile water for injections, 0.9% saline or 5%
dextrose/saline) that is as close to physiological pH as possible, as
highly acidic or basic solutions can be an irritant. If organic
solvents (like dimethylsulphoxide, DMSO) are necessary, these
should not exceed 5 ml kg�1 or 10% of the injected volume.
Detergents (such as Tween), solubilisers or emulsifiers should not
exceed 20% of the injected volume. Cyclodextrins should not
exceed 2 ml kg�1 or 45% of the injected volume, and where used at
420% of the injected volume, animals need to be rehydrated
within 2–4 h.

Experimental design including statistics

To maximise the scientific integrity of data generated while at the
same time using the minimum number of animals, statistical

expertise should be applied to all experimental design and analyses
(Festing, 2002; Festing and Altman, 2002; Festing et al, 2002; see
Boxes 3 and 4).

Chemoprevention

These studies routinely use either carcinogen-induced rat tumours
(e.g., azoxymethane-induced colorectal cancer) or mouse genetic
models of carcinogenesis (e.g., ApcMin colorectal; Corpet and
Pierre, 2003; Cai et al, 2009). Generally, animals receive the
putative chemopreventive agent in the diet or drinking water over
an extended period at innocuous doses. Tumour development is
measured at the end of the study and compared with animals on
a relevant control diet. Relatively large numbers of rodents
(e.g.; X14 per group; Cai et al, 2009) may be required for
the observed differences between the intervention and control
groups to be robust. Mechanistic and pharmacodynamic end-
points should also be included (Yang et al, 2001; Corpet and
Pierre, 2003).

Radiation therapy

External beam radiotherapy is primarily used for local tumour
irradiation, which requires lead shielding to minimise normal
tissue exposure. Typically, s.c. tumours are used and combination
treatment with a novel therapy is tested. Endpoints include
local control, growth delay and in vivo–in vitro clonogenic survival
(TCD50). Time to re-growth is preferred to a single time point
analysis. Local tissue toxicity is usually manifest as skin erythema
but should be minimised by restricting localised doses to less than
30 Gy (single dose). Exploration of better tolerated, clinically
relevant fractionated doses (e.g., 2–5 Gy per fraction over 1–2
weeks) is encouraged. Should moist desquamation occur, this
should not be allowed to persist for more than 24 h. Irradiated s.c.
tumours can show ulceration, which may reflect tumour response.
However, if there is evidence of infection and/or no signs of tissue
repair the animal should be humanely killed. The acute and late
effects of radiation treatment may also be examined in a relevant
organ, particularly when studying new combination paradigms.
A common endpoint has been the development of fibrosis in
lung tissue, although more recently measurement of breathing rate
has been implemented to detect symptoms before they become
distressful to the animal (Jackson et al, 2010).

Radiotherapy can also be delivered in the form of targeted
radionuclides (normally attached to antibodies; e.g., Martensson
et al, 2005). Normal tissue toxicity will depend on antigen

Box 3 EXPERIMENTAL STUDY DESIGN

1. Power analysis calculations should be applied to determine sample sizes.
There are many commercially available statistical packages to support
such calculations.
A number of variables need to be specified to perform the analysis.
including the effect size of biological interest (specified by the
experimenter), the standard deviation, the significance level (normally set
to 5%) and the desired power of the experiment. The desired power
should be set to a minimum of 80% (i.e., at least an 80% chance of
declaring the defined ‘meaningful biological change’ as being statistically
significant)
Estimates of biological variability should be used in sample size and power
calculations. These estimates are established from accrued historical
databases, pilot studies or published data. Biological databases must be
continually updated and monitored with a regular review of group sizes.
It is helpful to plot the variance estimates for control groups from a given
type of test with time, and constant attempts made to identify any
underlying cause of variation, which may ultimately lead to a reduction
in group size

2. Multiple treated groups will often be compared against one control to
reduce the number of studies performed. As the control group is involved
in every comparison, i.e., to all treated groups, it is often appropriate to set
the control group size to be higher in comparison with the treated groups

3. When optimising animal model conditions, factorial design provides
a set of tools for efficiently exploring multiple parameters simultaneously.
Factorial design is a more efficient approach in comparison with the
common one-variable-at-a-time approach, and leads to a more reliable
understanding of the effects of parameters and their interactions. This in
turn can lead to a better animal model

4. The power analysis calculation described above provides fixed sample
sizes for each compound. An alternative, applicable in appropriate
situations, would be to adopt a sequential design. Compounds are tested
on more than one occasion and stopping rules are devised, so that
extreme compounds (either highly effective or not effective at all) are
dropped early from the study. The advantage to a sequential design is that
on average fewer animals will be used per compound in comparison
with the fixed-sample-size case

Box 4 DATA ANALYSIS

1. Sometimes data need to be transformed before data analysis.
The justification for transforming data should be given. A pertinent
example is determining the percentage inhibition of tumour growth
from comparative tumour volume data. As the variance of tumour
measurements increases with the mean, data should ideally be analysed
on a logarithmic scale, with each animal exhibiting a difference in log10
(tumour volume) from initial

2. Meaningful biological change, measurable endpoints and intended
statistical analyses should be pre-defined. For the percentage inhibition
of tumour growth example, a suitable endpoint would be a comparison
of the change in tumour volume: i.e., log10 (final volume)�log10
(initial volume) between the control and the treatment groups

3. When examining changes in means in one direction only (e.g., when
identifying inhibition rather than change) then one-sided (rather than
two-sided) statistical tests will be used. For a comparison of two groups
a t-test is adequate, whereas experimental data with multiple groups
(vs a control) should be analysed by one-way ANOVA

Abbreviation: ANOVA¼ analysis of variance
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expression on tissues relative to the tumour and the nature of the
emitter. Whole-body irradiation can also be used to suppress the
immune response of an animal, for example, or to treat
disseminated disease. Selected doses should not manifest toxicity
over the duration of the experiment, for example, gut toxicity
within 5 days or haematological toxicity within 30 days.

UV radiation (UVR)

The response of mouse skin to UVR may be used, for example, to
study the aetiology of non-melanoma skin cancer (van Kranen and
de Gruijl, 1999; Hedelund et al, 2006). Generally, experiments are
performed with hairless (Skh-hr2) mice. As mouse skin does not
show signs of burning, it is important to use a biologically relevant,
non-burning dose of 0.2– 0.3 MED (minimal erythema dose; 50%
skin thickening¼ 0.5 MED). Skin thickness should be measured
2–3 times weekly after increasing the dose of UVR until 20– 30%
thickening has occurred. If hyperplasia is maintained over 12– 15
weeks skin tumours may form. A protective mouse restrainer
should be used as UV radiation is damaging to eyes and ears.

IMAGING

General considerations

Imaging techniques now have a principal role in translational
cancer research, enabling sequential analysis of biological end-
points in the same animal, with obvious welfare benefits. The main
utility of small-animal imaging is for monitoring deep-seated
tumours and metastases with or without treatment. Applications
include studies of basic biological processes and of tissue
pharmacokinetics and pharmacodynamic responses to treatment
(Paulmurugan et al, 2002; Galbraith et al, 2003; Pillai et al, 2008;
Tennant et al, 2009; Nguyen et al, 2009b). However, animal
numbers may not be reduced if, for example, full endpoint analysis
requires surgical intervention such as cannulation of blood
vessels or when contrast agents have a long half-life. Here,
sequential imaging may not be possible and alternative tech-
niques involving tissue excision may provide more information
(usually at higher spatial resolution) from the same number of
animals.

There is an increasing clinical need for pharmacodynamic
imaging with molecularly targeted cancer therapeutics. However,
interpretation of imaging signals is often difficult and animal
models have an important role in rigorous validation of new
techniques. This needs to be accompanied by consideration of
unique animal welfare issues. Use of external imaging techniques
on small animals is not completely non-invasive as some form of
anaesthesia or physical restraint is necessary and surgery or
administration of contrast agents may be required.

Imaging techniques

The applications, advantages and disadvantages of commonly
used imaging technologies are summarised in Table 5 and
have also been reviewed recently (Workman et al, 2006; Brindle,
2008; Weissleder and Pittet, 2008). Whole-body optical imaging
is relatively simple and cost-effective (Edinger et al, 2002).
Tumour cells are genetically modified to constitutively or
inducibly express a fluorescent protein (e.g., eGFP, dsRed) or an
enzyme that activates an exogenously administered substrate to
a bioluminescent molecule (usually luciferase for activation of a
luciferin). The whole animal is imaged using sensitive optical
detectors, which may or may not incorporate a tomographic
facility (Figure 4). The potential influences of genetic modification
and/or substrate administration on immunogenicity and response
to treatment, as well as animal welfare, must be considered

(Tuchin, 1993; Dennis, 2002; Condeelis and Segall, 2003; Wells
et al, 2006).

Intravital microscopy uses a wide variety of optical imaging
techniques, often incorporating fluorescent or bioluminescent
genetic reporters or markers, including nano-particles (Hoffman,
2005). It has particular animal welfare issues because it involves
surgery to provide optical clarity and visualisation on a micro-
scope stage or using fibre-optic light guides (Weissleder and Pittet,
2008). Some intravital microscopy techniques (e.g., tumours
growing in the intestinal mesentery) require laparotomy with
deep anaesthesia, so that imaging is only possible for a few hours
under terminal anaesthesia. Surgical implantation of ‘window’
chambers for tumour implantation enables imaging to be
performed over days to weeks (Dewhirst et al, 1987; Lehr et al,
1993; Brown et al, 2001; Reyes-Aldasoro et al, 2008). Here, general
anaesthesia is only essential for the initial surgery and imaging
may be performed with restrained animals. Strict aseptic
technique and good post-operative care and analgesia are essential
(Richardson and Flecknell, 2005; Flecknell, 2008).

Most physical imaging techniques require use of exogenous
contrast agents and only positron emission tomography (PET) and
single photon emission computed tomography (SPECT) are
sufficiently sensitive to allow use at true tracer levels; so possible
pharmacological effects of contrast agents need to be carefully
considered. The same procedures for tolerability testing should
apply to imaging agents as for new drugs. Some magnetic
resonance imaging (MRI) techniques use inherent properties of
tissues to provide endogenous imaging contrast. For instance,
BOLD (blood-oxygen-level-dependent) MRI allows assessment of
tissue oxygenation. These techniques avoid the use of pharmaco-
logical agents but results may be difficult to interpret.

Contrast-enhanced CT has the highest spatial resolution of all
clinically applicable imaging techniques and is amenable to rapid
kinetics. However, depending on the operating parameters and
scan length, this may involve considerable ionising radiation dose
per scan (0.02– 0.6 Gy; typically 0.1– 0.3 Gy) (Boone et al, 2004;
Carlson et al, 2007; Brindle, 2008). Doses should be minimised to
avoid compromising experimental results through interaction of
ionising events with the biological processes of interest, as well as
welfare issues; as a guide, total radiation dose 41 Gy can affect
tumour growth and whole-body doses 46 Gy are generally lethal
to small rodents. Users of fused PET–CT or SPECT– CT systems
should note that the radiation dose from the PET or SPECT can be
as large as the CT dose. In addition, iodine-based contrast agents
are nephrotoxic and, if required for repeat studies, well-tolerated
doses should be established.

Anaesthesia and restraint for imaging

Physical restraint and/or general anaesthesia are required for
small-animal imaging. Both procedures can affect animal well-
being and introduce experimental artefacts. Body temperature
must be maintained and monitored during general anaesthesia
using thermostatically controlled heating pads, microwaveable gels
or warm air blowers. Light general anaesthesia using an inhala-
tional anaesthetic such as isofluorane or a short-lived i.v. injectable
such as propafol should be used for pharmacological restraint,
wherever possible. Deleterious effects of physical restraint can be
minimised by appropriate design of restrainers, provision
of black-outs and acclimatisation (Warden et al, 2000; Narciso
et al, 2003; King et al, 2005). Preferred methods will depend
on the species, imaging modality and device used. Where general
anaesthesia is not appropriate, sedation with use of gentle
physical restraint is encouraged, taking account of veterinary
advice. Acclimatisation needs to be thorough, as a short period
of training can induce more stress (Warden et al, 2000; Narciso
et al, 2003).

Guidelines for the welfare and use of animals in cancer research

P Workman et al

1568

British Journal of Cancer (2010) 102(11), 1555 – 1577 & 2010 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



Length of imaging sessions

If applicable, animals should be transported to imaging facilities in
suitable transport boxes, with food and water provided before
imaging. The length, total number of imaging sessions and
intervals between them depend on factors such as time required
to acquire images, tolerance to restraint or general anaesthesia,
half-life of the contrast agent and whether cannulation is required.
Consideration also needs to be given to exposure of immune-
deprived animals to a non-pathogen-free environment, as well as
monitoring and control of animal physiology during imaging. If
animals have no access to water, an imaging session should
typically last no more than 2 h and total imaging time should not
exceed 2– 3 h in a 24-h period. Use of un-anaesthetised animals
restrained for more than 2 h must be avoided except where there is
exceptional justification, for example, for animals recovering from
general anaesthesia after cannulation of superficial vessels before
imaging. In this case, use of local analgesia around the cannulation
site is essential. Animals anaesthetised for more than 2 h should be
rehydrated if recovery is prolonged, for example, by injection of

dextrose/saline. If animals need to be anaesthetised more than
once per day, they must be fully recovered, eating and drinking
before being re-anaesthetised. On completion of a session, animals
should either be killed or kept warm until full recovery from
anaesthesia or until the next analysis session. Analysis may be
repeated on the same animal but typically this should not exceed
five sessions within a 1- to 2-week period and typically no more
than one imaging session per day.

HUMANE ENDPOINTS

There are ethical, scientific and legal reasons for ensuring that
adverse effects are minimised. Choice of appropriate humane
endpoints provides significant opportunities for refinement, and
should be developed in tandem with the requirements for a valid
scientific outcome. Early endpoints reduce non-specific systemic
effects and so may increase the precision of the results obtained.
Pilot studies, including autopsy to determine the full extent of
tumour growth, will facilitate the definition of robust and refined

Table 5 Examples of imaging techniques

Imaging method Imaging time Spatial resolutiona Main purpose Advantages Disadvantages

Optical:
Bioluminescence
and fluorescence

Sec–min Organ: 50 mm Whole
body: 1–5 mm

Monitoring tumour response
to treatment in deep-seated/
orthotopic sites and metastatic
spread; imaging gene
expression and protein–
protein interactions

Relatively non-invasive
(requires restraint), high
sensitivity (amol–nmol); many
fluorescent and near-infrared
probes available; amenable
to use of gene reporters;
relatively cheap

In most cases, these methods
require genetic modification of
tumour cells for detection;
quantitation relies on 2D
images in current imaging
systems; nude or shaved
animals are required

Three-dimensional
high-frequency
ultrasonography

Sec–min 100 mm in-plane
resolution

Relative measure of
tissue blood flow;
three-dimensional
measurement of
tumour size

Relatively non-invasive
(requires restraint), high
sensitivity (single particle);
absolute measurements
are possible with suitable
contrast agents, e.g..
microbubbles

Specialized application

Magnetic resonance
imaging (MRI),
spectroscopy (MRS)
or spectroscopy
imaging (MRSI)

Min–hours 100 mm in-plane
resolution (7 T);
much higher for
spectroscopy
without imaging

Pharmacodynamics,
pathophysiology,
pharmacokinetics,
anatomy

Some techniques use
endogenous contrast;
good spatial resolution
(imaging)

Poor sensitivity (mmol), so
that exogenous contrast agents
and drugs need to be given
at high concentration

Standard or contrast-
enhanced computed
tomography (CT)

Sec–min 100 mm Pharmacodynamics,
anatomy

Very good spatial resolution
combined with relatively
good sensitivity

High radiation dose (for
standard CT, 2 cGy for most
currently available systems),
limited number of contrast
agents, which may be
nephrotoxic

Single photon
emission computed
tomography (SPECT)

Min 1–2 mm Pharmacodynamics,
pathophysiology,
pharmacokinetics

High sensitivity (pmol)
Radiochemistry can be
performed in nuclear
medicine department

Limited radiochemicals
available compared with PET,
less quantitative

Positron emission
tomography (PET)

Min 1–2 mm Pharmacodynamics,
pathophysiology,
pharmacokinetics

High sensitivity (pmol)
allowing true tracer
kinetics; unlimited range of
radiochemicals making it
very flexible; fully
quantitative

Poor spatial resolution; full
quantitation requires
cannulation (for kinetic studies);
requires specialized
radiochemistry in most
situations

Optical intravital
microscopy

Sec 1–5 mm Real-time imaging of
tumour microcirculation

Microscopic spatial resolution,
good sensitivity (single cell),
many fluorescent contrast
agents readily available,
amenable to use of gene
reporters; relatively cheap

Requires surgical intervention

aOptimum spatial resolution is usually achieved at the expense of ability to obtain fast kinetics.

Guidelines for the welfare and use of animals in cancer research

P Workman et al

1569

British Journal of Cancer (2010) 102(11), 1555 – 1577& 2010 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s



endpoints. Endpoints for particular models must also take account
of the known pathogenesis of the particular tumour model in
question and should be regularly reviewed in the light of
experience.

The endpoints proposed are based on animal models in wide-
spread use (for examples see Tables 1 and 2); however, each study
should be considered on its own merits. For example, tumorigenicity
studies can be terminated as soon as progressive tumour growth is
evident. By contrast, carcinogen-induced skin papillomas, for
example, undergo malignant transformation late in their development
and may require later endpoints. Imaging techniques facilitate the
development of more defined endpoints for some tumour models.
Every effort should be made to identify factors allowing scientific
decisions to be made at the earliest stage possible, while taking into
account the total burden of procedures on animal welfare. The
intentional use of death as an endpoint is unacceptable and animals
should not be allowed to become moribund.

The choice of site for solid tumours will influence the maxi-
mum acceptable tumour load and the appropriate humane
endpoints. Sites such as the footpad, tail, eye or bone are
likely to be painful or distressing and require special justification

and earlier endpoints. Similarly, tumours that metastasise to
sensitive sites need great care. If brain tumours can be justified
(e.g., to increase understanding of their biology and to develop
therapies for this area of unmet clinical need), body weight
loss is reportedly a sensitive endpoint (Redgate et al, 1991) and
MRI or bioluminescent imaging (BLI) techniques can be
very useful (van Furth et al, 2003; Ragel et al, 2008; McCann
et al, 2009). Intramuscular tumours are painful and only justified
where there is a strong case for orthotopic studies, for example,
for sarcomas.

In genetically modified animals, particular care is needed to
ensure detection of unexpected sites of tumour development. As
with all internal tumour sites, this includes clinical examination,
measurement of body weight, abdominal palpation and loss of
condition. Humane endpoints, specialist care and interven-
tions should reflect best practice and be discussed and agreed
between researchers, veterinarians and animal care staff before
commencement of the experiment. Development and publication
of appropriate experimental analyses (e.g., pharmacodynamic
determinations, functional imaging) to capture detailed pheno-
typic information assists rational determination of endpoints.

Day 8 Day 15 Day 29 Day 41

Day 8 Day 15 Day 29 Day 41

Transverse images

Coronal images
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Figure 4 Examples of in vivo imaging in pre-clinical cancer research. (A) Optical surface bioluminescence imaging of orthotopically xenografted
human PC3 prostate carcinoma cells transfected with luciferase (PC3luc2a). Mice were imaged using a Charged Coupled Device (CCD) camera,
which is super-cooled to enhance detection sensitivity and image resolution. The images shown were taken after systemic administration of luciferin, with
‘intensity of luminescence’ shown as ‘heat’ maps and red as maximum intensity. The scale shows the number of photons detected. Top panel: Untreated
mice at day 8–41 after transplantation; bottom panel: before and after treatment with 5 mg kg�1 taxotere on day 10. This technique is useful for monitoring
treatment effects in deep-seated tumour sites. Light scattering through tissues makes precise quantitation difficult. (B) PET imaging of tumour cell
proliferation using 18F-30-fluoro-30-deoxy-L-thymidine (FLT). Transverse and coronal (0.5 mm) images of HCT116 tumour-bearing mice 24 h before
treatment and after 4 daily treatments with the histone deacetylase inhibitor LAQ842 at 25 mg kg�1. 30- to 60-min summed images from a dynamic scan are
presented. Numerous radiotracers are available for investigating specific biochemical pathways in vivo, if specialised facilities are available. The scale shows the
intensity of radiotracer uptake. (C) Intravital imaging of tumour vasculature of the P22 rat sarcoma growing in a dorsal skin flap window chamber. The image
was obtained by multi-photon fluorescence microscopy after i.v. administration of 70 kDa FITC–dextran. High spatial resolution is obtained but surgical
intervention is required.
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Tumour burden

Tumour burden should always be limited to the minimum
required for a valid scientific outcome. For example, efficacy
studies should be terminated once durable, statistically significant
therapeutic effects can be shown. Therapeutic studies should be
designed to avoid the need for control tumours to become
excessively large. The size of any tumours should be limited when
they are used simply for routine transplantation or as a source of
tumour tissue. In all cases the general health and condition of
an animal remains the overriding determinant. Adverse effects on
the animal will depend on the biology, site, mode of growth of the
tumour and any additional procedures or treatments. Despite the
caveats, estimation of tumour size and burden is an important
consideration in determining endpoints.

Assessment of the size of superficial tumours using callipers
(usually of two diameters at right angles) is an easy and definable
method. Measurement variations can be minimised by ensuring
that the same well-trained technician is involved for the duration
of the study. Response to therapy may be measured by changes in
tumour growth rate, re-growth delay, cell survival (measured by
clonogenic assay) or an appropriate surrogate marker. Excising
and weighing tumours at the end of a study can provide an
additional objective endpoint, which avoids errors due to
variations in tumour shapes and estimations of volume or mass.
For an animal carrying a single tumour, the mean diameter should
not normally exceed 1.2 cm in mice or 2.5 cm in rats, or 1.5 and
2.8 cm, respectively, for therapeutic studies. Where two tumours
per animal are grown, for example, in contralateral flanks, the
size should be correspondingly less and should not exceed the
maximum burden of a single tumour. Multiple tumours may
develop in genetically modified animals (e.g., mammary tumours
in polyoma virus middle T transgenic mice; Guy et al, 1992) or in
the skin of animals subjected to UVR (El-Abaseri and Hansen,
2007) or chemical carcinogens (Johansen et al, 2009), for which
similar limits should be observed. Exceptions to these advised size
limits would require rigorous scientific justification.

Determining the tumour burden of internal orthotopic cancers,
systemic lymphoreticular tumours or metastatic disease is
challenging. Pilot experiments using small numbers of animals
are important to allow characterisation of the kinetics and patterns
of spread, to predict clinical signs and to define humane endpoints.
Biomarkers or circulating cancer cells may be used as surrogates
for assessing the burden of lymphomas and leukaemias, and real-
time imaging is a valuable adjunct. Appropriate biochemical and
pathological indicators or use of engineered reporter systems or
imaging techniques should be used to determine the onset of
disease. Reliance must also be placed on the general condition of
the animal, together with assessment of palpable tumours and
specific signs such as hind-limb weakness or paralysis.

Clinical signs

In general the clinical signs shown in Box 5 are principal indicators
of rare but severe symptoms of potential adverse effects, which
should be avoided. Where any one sign is present the animal
should immediately be humanely culled and vigilance increased
for the remainder of the cohort.

With solid tumours, scoring of ulceration, distension of
covering tissues and cachexia (severe body weight loss) should
be incorporated into the endpoints. Ulceration is a lesion typified
by necrosis of superficial tissues, which may be dry, suppurating
or exudative. Necrosis resulting in skin breakdown or exudation
persisting beyond 48 h is grounds for termination. Some tumours,
such as those grown in sensitive sites or that develop extensive
necrosis, may be painful, although objective criteria are lacking for
mice. Further research is required to enable better assessment of
pain and to assist in formulating the most appropriate endpoints.

In all cases endpoints must provide for action to be taken to
terminate animals humanely when the degree of suffering cannot
be justified by the scientific objective, when the objective has been
achieved or cannot be realised, or when the quality of the results
has been compromised.

SUMMARY AND CONCLUDING REMARKS

This set of guidelines is designed to update and enhance the second
edition (Workman et al, 1998). Information is provided on the more
complex, molecularly defined and biologically relevant models now
available, including genetically engineered, orthotopic and metastatic
tumour systems. These more ‘patient-like’ models require sophisti-
cated methods of evaluation; hence a detailed section on the different
imaging modalities that are now used has been added. Tables 1 and 2
provide examples of some widely used experimental models. Figure 1
offers an example of the type of illustrative aid that can be used to
facilitate the rational choice of appropriate models in a given study.
Examples of tumour models, experimental design and procedures
are provided throughout. However, it is emphasised that these are
intended to act as a guide only, and each study should be tailored to
the specific experimental objectives. There is renewed emphasis on
continuing applications of the 3Rs – replacement (of animals with
alternative methods), reduction (in the numbers of animals used to
achieve scientific objectives) and refinement (in experimental design,
techniques and husbandry to minimise adverse effects and improve
welfare). There is an expectation that the highest animal welfare
standards will be demanded from grant-awarding bodies and
scientific journals. It is also emphasised that there is a responsibility
for researchers to publish improved models and methodology for the
benefit of the research community worldwide. A comprehensive
bibliography is included to cover all of the principal topics and links
to other, online resources are also provided. It is to be stressed that
animal welfare considerations are not only important for ethical and
legal reasons, but also should be fully consistent with the highest
standards of scientific investigation. It is anticipated that the appro-
priate use of animal models will make an important contribution to
increasing further our fundamental understanding of cancer and will
enhance our growing ability to diagnose, treat and prevent it.

Box 5 CLINICAL SIGNS NECESSITATING IMMEDIATE INTERVENTION

1. Failure to eat or drink over a 24- to 48-h period resulting in emaciation
or dehydration

2. Consistent or rapid body weight loss reaching 20% at any time or 15%
maintained for 72 h compared with the pre-treatment weight of adult
mice or age-matched, vehicle-treated controls. With some tumours
body weight is a very poor indicator and muscle atrophy or emaciation is
more useful. Body condition scoring provides a very useful indication of
muscle loss (Ullman-Cullere and Foltz, 1999)

3. Persistent hypothermia
4. Bloodstained or mucopurulent discharge from any orifice
5. Laboured respiration, particularly if accompanied by nasal discharge

and/or cyanosis
6. Enlarged lymph nodes or spleen
7. Hind-limb paralysis or weakness
8. Anaemia as indicated by symptoms such as pale feet, or haematological

measures
9. Significant abdominal distension or where ascites burden exceeds 10% of

the bodyweight of age-matched controls. Accurate determination is difficult
but body girth is useful and a 20% increase should be the maximum
normally allowed; similar to the appearance of a pregnant mouse

10. Incontinence or diarrhoea over a 48-h period
11. Tumours that interfere with locomotion or cause abnormal vocalisation,

animal behaviour or function

Such severe symptoms are likely to occur very rarely in well-designed
experimental studies, should be avoided and require immediate humane
termination.

Guidelines for the welfare and use of animals in cancer research

P Workman et al

1571

British Journal of Cancer (2010) 102(11), 1555 – 1577& 2010 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s

Administrator
Highlight



ACKNOWLEDGEMENTS

We thank authors Professor Fran Balkwill, Dr David Farningham,
Professor Gill Tozer, Professor Sue Watson and Dr Steve Wedge
for leading and coordinating subgroups of the committee dealing
with specific topics.

We thank Dr Robert J Shaw (Discovery Statistics, AstraZeneca,
Alderley Park) for statistical input. We are also grateful to Professor Andy
Gescher (University of Leicester, UK) for expert advice and a number of
other individuals who kindly gave advice on specific issues or commented
on previous drafts of the guidelines. We thank Dr Ben Onwuegbusi
(Cancer Research UK) for help in acting as Committee Secretary.

REFERENCES

Abatan OI, Welch KB, Nemzek JA (2008) Evaluation of saphenous
venipuncture and modified tail-clip blood collection in mice. J Am
Assoc Lab Anim Sci 47: 8 – 15

Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston
MS, DePinho RA (2003) Activated Kras and Ink4a/Arf deficiency
cooperate to produce metastatic pancreatic ductal adenocarcinoma.
Genes Dev 17: 3112 – 3126

Ahsan H, Aziz MH, Ahmad N (2005) Ultraviolet B exposure activates Stat3
signaling via phosphorylation at tyrosine705 in skin of SKH1 hairless
mouse: a target for the management of skin cancer? Biochem Biophys Res
Commun 333: 241 – 246

Alsheikhly AR, Zweiri J, Walmesley AJ, Watson AJ, Christmas SE (2004)
Both soluble and membrane-bound forms of Flt3 ligand enhance tumor
immunity following ‘suicide’ gene therapy in a murine colon carcinoma
model. Cancer Immunol Immunother 53: 946 – 954

Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA
(2000) Telomere dysfunction promotes non-reciprocal translocations
and epithelial cancers in mice. Nature 406: 641 – 645

Artursson P, Palm K, Luthman K (2001) Caco-2 monolayers in
experimental and theoretical predictions of drug transport. Adv Drug
Deliv Rev 46: 27 – 43

Baersch G, Mollers T, Hotte A, Dockhorn-Dworniczak B, Rube C, Ritter J,
Jurgens H, Vormoor J (1997) Good engraftment of B-cell precursor ALL
in NOD-SCID mice. Klin Padiatr 209: 178 – 185

Balansky RM, Ganchev G, D’Agostini F, De Flora S (2002) Effects of
N-acetylcysteine in an esophageal carcinogenesis model in rats treated
with diethylnitrosamine and diethyldithiocarbamate. Int J Cancer 98:
493 – 497

Banerji U, Walton M, Raynaud F, Grimshaw R, Kelland L, Valenti M,
Judson I, Workman P (2005) Pharmacokinetic – pharmacodynamic
relationships for the heat shock protein 90 molecular chaperone
inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian
cancer xenograft models. Clin Cancer Res 11: 7023 – 7032

Barfield M, Spooner N, Lad R, Parry S, Fowles S (2008) Application of dried
blood spots combined with HPLC – MS/MS for the quantification of
acetaminophen in toxicokinetic studies. J Chromatogr B Analyt Technol
Biomed Life Sci 870: 32 – 37

Bazin R, Boucher G, Monier G, Chevrier MC, Verrette S, Broly H, Lemieux
R (1994) Use of hu-IgG-SCID mice to evaluate the in vivo stability of
human monoclonal IgG antibodies. J Immunol Methods 172: 209 – 217

Biotechnology and Biological Sciences Research Council; Department for
Environment, Food and Rural Affairs; Medical Research Council;
National Centre for the Replacement, Refinement and Reduction of
Animals in Research; Natural Environment Research Council;
Wellcome Trust (2008) Responsibility in the use of animals in bioscience
research: expectations of the major research council and charitable
funding bodies. National Centre for the Replacement, Refinement and
Reduction of Animals in Research, London. http://www.nc3rs.org.uk/
downloaddoc.asp?id=719 (Accessed date 30 March 2010)

Becher OJ, Holland EC, Sausville EA, Burger AM (2006) Genetically
engineered models have advantages over xenografts for preclinical
studies. Cancer Res 66: 3355 – 3359

Becker JC, Pancook JD, Gillies SD, Mendelsohn J, Reisfeld RA (1996)
Eradication of human hepatic and pulmonary melanoma metastases in
SCID mice by antibody-interleukin 2 fusion proteins. Proc Natl Acad Sci
USA 93: 2702 – 2707

Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of
angiogenesis inhibitors on multistage carcinogenesis in mice. Science
284: 808 – 812

Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM,
Buck G, Chen L, Beare D, Latimer C, Widaa S, Hinton J, Fahey C, Fu B,
Swamy S, Dalgliesh GL, Teh BT, Deloukas P, Yang F, Campbell PJ,

Futreal PA, Stratton MR (2010) Signatures of mutation and selection in
the cancer genome. Nature 463: 893 – 898

Blouin S, Basle MF, Chappard D (2008) Interactions between micro-
environment and cancer cells in two animal models of bone metastasis.
Br J Cancer 98: 809 – 815

Boone JM, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from
micro-CT. Mol Imaging 3: 149 – 158

Brindle K (2008) New approaches for imaging tumour responses to
treatment. Nat Rev Cancer 8: 94 – 107

Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D,
Jain RK (2001) In vivo measurement of gene expression, angiogenesis
and physiological function in tumors using multiphoton laser scanning
microscopy. Nat Med 7: 864 – 868

Bruneau P, McElroy NR (2006) logD7.4 modeling using Bayesian
Regularized Neural Networks. Assessment and correction of the errors
of prediction. J Chem Inf Model 46: 1379 – 1387

Bruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ (1999) In vivo
selection and characterization of metastatic variants from human
pancreatic adenocarcinoma by using orthotopic implantation in nude
mice. Neoplasia 1: 50 – 62

Cai H, Sale S, Schmid R, Britton RG, Brown K, Steward WP, Gescher AJ
(2009) Flavones as colorectal cancer chemopreventive agents – phenol-o-
methylation enhances efficacy. Cancer Prev Res (Phila PA) 2: 743 – 750

Carlson SK, Classic KL, Bender CE, Russell SJ (2007) Small animal absorbed
radiation dose from serial micro-computed tomography imaging. Mol
Imaging Biol 9: 78 – 82

Chan R, Muller WJ, Siegel PM (1999) Oncogenic activating mutations in the
neu/erbB-2 oncogene are involved in the induction of mammary tumors.
Ann N Y Acad Sci 889: 45 – 51

Chen D, Livne-bar I, Vanderluit JL, Slack RS, Agochiya M, Bremner R
(2004) Cell-specific effects of RB or RB/p107 loss on retinal development
implicate an intrinsically death-resistant cell-of-origin in retinoblastoma.
Cancer Cell 5: 539 – 551

Chen X, Yang G, Ding WY, Bondoc F, Curtis SK, Yang CS (1999) An
esophagogastroduodenal anastomosis model for esophageal adenocarcinogen-
esis in rats and enhancement by iron overload. Carcinogenesis 20: 1801 – 1808

Chou TC (2006) Theoretical basis, experimental design, and computerized
simulation of synergism and antagonism in drug combination studies.
Pharmacol Rev 58: 621 – 681

Christophorou MA, Martin-Zanca D, Soucek L, Lawlor ER, Brown-Swigart
L, Verschuren EW, Evan GI (2005) Temporal dissection of p53 function
in vitro and in vivo. Nat Genet 37: 718 – 726

Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI (2006)
The pathological response to DNA damage does not contribute to
p53-mediated tumour suppression. Nature 443: 214 – 217

Colclough N, Hunter A, Kenny PW, Kittlety RS, Lobedan L, Tam KY,
Timms MA (2008) High throughput solubility determination with
application to selection of compounds for fragment screening. Bioorg
Med Chem 16: 6611 – 6616

Collado B, Carmena MJ, Clemente C, Prieto JC, Bajo AM (2007) Vasoactive
intestinal peptide enhances growth and angiogenesis of human experi-
mental prostate cancer in a xenograft model. Peptides 28: 1896 – 1901

Collins I, Workman P (2006) New approaches to molecular cancer
therapeutics. Nat Chem Biol 2: 689 – 700

Comstock KE, Hall CL, Daignault S, Mandlebaum SA, Yu C, Keller ET
(2009) A bioluminescent orthotopic mouse model of human osteosarco-
ma that allows sensitive and rapid evaluation of new therapeutic agents
in vivo. In Vivo 23: 661 – 668

Condeelis J, Segall JE (2003) Intravital imaging of cell movement in
tumours. Nat Rev Cancer 3: 921 – 930

Corpet DE, Pierre F (2003) Point: from animal models to prevention
of colon cancer. Systematic review of chemoprevention in min mice

Guidelines for the welfare and use of animals in cancer research

P Workman et al

1572

British Journal of Cancer (2010) 102(11), 1555 – 1577 & 2010 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



and choice of the model system. Cancer Epidemiol Biomarkers Prev 12:
391 – 400

De Fabo EC (2006) Initial studies on an in vivo action spectrum for
melanoma induction. Prog Biophys Mol Biol 92: 97 – 104

Decker S, Hollingshead M, Bonomi CA, Carter JP, Sausville EA (2004)
The hollow fibre model in cancer drug screening: the NCI experience.
Eur J Cancer 40: 821 – 826

Dennis C (2006) Cancer: off by a whisker. Nature 17: 739 – 741
Dennis Jr MB (2002) Welfare issues of genetically modified animals. Ilar J

43: 100 – 109
Dewhirst MW, Gustafson C, Gross JF, Tso CY (1987) Temporal effects of

5.0 Gy radiation in healing subcutaneous microvasculature of a dorsal
flap window chamber. Radiat Res 112: 581 – 591

Dickson PV, Hamner B, Ng CY, Hall MM, Zhou J, Hargrove PW, McCarville
MB, Davidoff AM (2007) In vivo bioluminescence imaging for early
detection and monitoring of disease progression in a murine model of
neuroblastoma. J Pediatr Surg 42: 1172 – 1179

Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D,
Vidal JM, van de Vorstenbosch C (2001) A good practice guide to the
administration of substances and removal of blood, including routes and
volumes. J Appl Toxicol 21: 15 – 23

Dohta Y, Yamashita T, Horiike S, Nakamura T, Fukami T (2007) A system
for LogD screening of 96-well plates using a water-plug aspiration/
injection method combined with high-performance liquid chromato-
graphy-mass spectrometry. Anal Chem 79: 8312 – 8315

Dong X, Guan J, English JC, Flint J, Yee J, Evans K, Murray N, Macaulay C,
Ng RT, Gout PW, Lam WL, Laskin J, Ling V, Lam S, Wang Y (2010)
Patient-derived first generation xenografts of non-small cell lung
cancers: promising tools for predicting drug responses for personalized
chemotherapy. Clin Cancer Res 16: 1442 – 1451

Du-Cuny L, Huwyler J, Wiese M, Kansy M (2008) Computational aqueous
solubility prediction for drug-like compounds in congeneric series.
Eur J Med Chem 43: 501 – 512

Edinger M, Cao YA, Hornig YS, Jenkins DE, Verneris MR, Bachmann MH,
Negrin RS, Contag CH (2002) Advancing animal models of neoplasia
through in vivo bioluminescence imaging. Eur J Cancer 38: 2128 – 2136

El-Abaseri TB, Hansen LA (2007) EGFR activation and ultraviolet light-
induced skin carcinogenesis. J Biomed Biotechnol 2007: 97939

Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in
hematopoietic lineages. Mol Cell 4: 199 – 207

Festing M, Overend P, Gaine Das R, Cortina Borja M, Berdoy M (2002) The
design of Animal Experiments: Reducing the Use of Animals in Research
Through Better Experimental Design. Royal Society of Medicine Press:
London

Festing MF (2002) The design and statistical analysis of animal
experiments. ILAR J 43: 191 – 193

Festing MF, Altman DG (2002) Guidelines for the design and statistical
analysis of experiments using laboratory animals. ILAR J 43: 244 – 258

Flecknell P (2008) Analgesia from a veterinary perspective. Br J Anaesth
101: 121 – 124

Fluck MM, Haslam SZ (1996) Mammary tumors induced by polyomavirus.
Breast Cancer Res Treat 39: 45 – 56

Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE (1966)
Quantitative comparison of toxicity of anticancer agents in mouse, rat,
hamster, dog, monkey, and man. Cancer Chemother Rep 50: 219 – 244

Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev
Cancer 7: 645 – 658

Gajewski TF (2000) Monitoring specific T-cell responses to melanoma
vaccines: ELISPOT, tetramers, and beyond. Clin Diagn Lab Immunol 7:
141 – 144

Galbraith SM, Maxwell RJ, Lodge MA, Tozer GM, Wilson J, Taylor NJ, Stirling JJ,
Sena L, Padhani AR, Rustin GJ (2003) Combretastatin A4 phosphate has
tumor antivascular activity in rat and man as demonstrated by dynamic
magnetic resonance imaging. J Clin Oncol 21: 2831 – 2842

Garber K (2006) Realistic rodents? Debate grows over new mouse models of
cancer. J Natl Cancer Inst 98: 1176 – 1178

Giovannini M, Robanus-Maandag E, van der Valk M, Niwa-Kawakita M,
Abramowski V, Goutebroze L, Woodruff JM, Berns A, Thomas G (2000)
Conditional biallelic Nf2 mutation in the mouse promotes manifestations
of human neurofibromatosis type 2. Genes Dev 14: 1617 – 1630

Giver CR, Li JM, Hossain MS, Lonial S, Waller EK (2004) Reconstructing
immunity after allogeneic transplantation. Immunol Res 29: 269 – 282

Glass B, Uharek L, Zeis M, Loeffler H, Mueller-Ruchholtz W, Gassmann W
(1996) Graft-versus-leukaemia activity can be predicted by natural
cytotoxicity against leukaemia cells. Br J Haematol 93: 412 – 420

Glinskii AB, Smith BA, Jiang P, Li X-M, Yang M, Hoffman RM, Glinsky GV
(2003) Viable circulating metastatic cells produced in orthotopic but not
ectopic prostate cancer models. Cancer Res 63: 4239 – 4243

Golay J, Cittera E, Di Gaetano N, Manganini M, Mosca M, Nebuloni M,
van Rooijen N, Vago L, Introna M (2006) The role of complement in the
therapeutic activity of rituximab in a murine B lymphoma model homing
in lymph nodes. Haematologica 91: 176 – 183

Graf MR, Sauer JT, Merchant RE (2005) Tumor infiltration by myeloid
suppressor cells in response to T cell activation in rat gliomas.
J Neurooncol 73: 29 – 36

Graff BA, Benjaminsen IC, Melas EA, Brurberg KG, Rofstad EK (2005)
Changes in intratumor heterogeneity in blood perfusion in intradermal
human melanoma xenografts during tumor growth assessed by
DCE-MRI. Magn Reson Imaging 23: 961 – 966

Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by
expression of polyomavirus middle T oncogene: a transgenic mouse
model for metastatic disease. Mol Cell Biol 12: 954 – 961

Ha WS, Kim CK, Song SH, Kang CB (2001) Study on mechanism of
multistep hepatotumorigenesis in rat: development of hepatotumori-
genesis. J Vet Sci 2: 53 – 58

Han Y, Chen XP, Huang ZY, Zhu H (2005) Nude mice multi-drug resistance
model of orthotopic transplantation of liver neoplasm and Tc-99m MIBI
SPECT on p-glycoprotein. World J Gastroenterol 11: 3335 – 3338

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57 – 70
Harlin H, Gajewski TF (2008) Diagnosis and treatment of mycoplasma-

contaminated cell cultures. Curr Protoc Cytom Appendix 3: Appendix 3C
Harris JC, Gilliam AD, McKenzie AJ, Evans SA, Grabowska AM, Clarke PA,

McWilliams DF, Watson SA (2004) The biological and therapeutic
importance of gastrin gene expression in pancreatic adenocarcinomas.
Cancer Res 64: 5624 – 5631

Hawariah A, Stanslas J (1998) Antagonistic effects of styrylpyrone
derivative (SPD) on 7,12-dimethylbenzanthracene-induced rat mammary
tumors. In Vivo 12: 403 – 410

Hedelund L, Lerche C, Wulf HC, Haedersdal M (2006) Carcinogenesis
related to intense pulsed light and UV exposure: an experimental animal
study. Lasers Med Sci 21: 198 – 201

Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH,
Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D
cooperate to promote chromosomal instability and widely metastatic
pancreatic ductal adenocarcinoma in mice. Cancer Cell 7: 469 – 483

Hirayama T, Honda A, Matsuzaki Y, Miyazaki T, Ikegami T, Doy M, Xu G,
Lea M, Salen G (2006) Hypercholesterolemia in rats with hepatomas:
increased oxysterols accelerate efflux but do not inhibit biosynthesis of
cholesterol. Hepatology 44: 602 – 611

Hirose Y, Hata K, Kuno T, Yoshida K, Sakata K, Yamada Y, Tanaka T,
Reddy BS, Mori H (2004) Enhancement of development of azoxy-
methane-induced colonic premalignant lesions in C57BL/KsJ-db/db
mice. Carcinogenesis 25: 821 – 825

Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize
cancer in vivo. Nat Rev Cancer 5: 796 – 806

Hoffman RM, Yang M (2005) Dual-color, whole-body imaging in mice.
Nat Biotechnol 23: 790; author reply 791

Houston JB, Carlile DJ (1997) Prediction of hepatic clearance from
microsomes, hepatocytes, and liver slices. Drug Metab Rev 29: 891 – 922

Howard ML, Hill JJ, Galluppi GR, McLean MA (2010) Plasma protein
binding in drug discovery and development. Comb Chem High
Throughput Screen 13: 170 – 187

Huxham LA, Kyle AH, Baker JH, Nykilchuk LK, Minchinton AI (2004)
Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Res
64: 6537 – 6541

Ihle NT, Lemos Jr R, Wipf P, Yacoub A, Mitchell C, Siwak D, Mills GB,
Dent P, Kirkpatrick DL, Powis G (2009) Mutations in the phosphatidyl-
inositol-3-kinase pathway predict for antitumor activity of the inhibitor
PX-866 whereas oncogenic Ras is a dominant predictor for resistance.
Cancer Res 69: 143 – 150

Ishikawa Y, Kozakai T, Morita H, Saida K, Oka S, Masuo Y (2006) Rapid detection
of mycoplasma contamination in cell cultures using SYBR Green-based real-
time polymerase chain reaction. In Vitro Cell Dev Biol Anim 42: 63 – 69

Jackson IL, Vujaskovic Z, Down JD (2010) Revisiting strain-related
differences in radiation sensitivity of the mouse lung: recognizing and
avoiding the confounding effects of pleural effusions. Radiat Res 173:
10 – 20

Johansen C, Vestergaard C, Kragballe K, Kollias G, Gaestel M, Iversen L
(2009) MK2 regulates the early stages of skin tumor promotion.
Carcinogenesis 30: 2100 – 2108

Guidelines for the welfare and use of animals in cancer research

P Workman et al

1573

British Journal of Cancer (2010) 102(11), 1555 – 1577& 2010 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s



Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA,
Jacks T (2001) Somatic activation of the K-ras oncogene causes early
onset lung cancer in mice. Nature 410: 1111 – 1116

Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M,
Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and
p53 in a conditional mouse model for breast cancer. Nat Genet 29:
418 – 425

Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW,
Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal
stem cells within tumour stroma promote breast cancer metastasis.
Nature 449: 557 – 563

Kato J, Kobayashi T, Villec CA (1968) Effect of clomiphene on the uptake of
estradiol by the anterior hypothalamus and hypophysis. Endocrinology
82: 1049 – 1052

Kelland LR (2004) Of mice and men: values and liabilities of the athymic
nude mouse model in anticancer drug development. Eur J Cancer 40:
827 – 836

Kenerson H, Dundon TA, Yeung RS (2005) Effects of rapamycin in the
Eker rat model of tuberous sclerosis complex. Pediatr Res 57: 67 – 75

Kennel SJ, Boll R, Stabin M, Schuller HM, Mirzadeh S (1999) Radio-
immunotherapy of micrometastases in lung with vascular targeted 213Bi.
Br J Cancer 80: 175 – 184

Kim EJ, Shin M, Park H, Hong JE, Shin HK, Kim J, Kwon DY, Park JH
(2009) Oral administration of 3,30-diindolylmethane inhibits lung
metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice.
J Nutr 139: 2373 – 2379

King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ,
Ferris CF (2005) Procedure for minimizing stress for fMRI studies in
conscious rats. J Neurosci Methods 148: 154 – 160

Koehl GE, Gaumann A, Geissler EK (2009) Intravital microscopy of tumor
angiogenesis and regression in the dorsal skin fold chamber: mechanistic
insights and preclinical testing of therapeutic strategies. Clin Exp
Metastasis 26: 329 – 344

Komatsubara H, Umeda M, Ojima Y, Minamikawa T, Komori T (2005) Detection
of cancer cells in the peripheral blood and lung of mice after transplantation of
human adenoid cystic carcinoma. Kobe J Med Sci 51: 67 – 72

Kragh M, Hjarnaa PJ, Bramm E, Kristjansen PE, Rygaard J, Binderup L (2003)
In vivo chamber angiogenesis assay: an optimized Matrigel plug assay for
fast assessment of antiangiogenic activity. Int J Oncol 22: 305 – 311

Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001) Loss of
p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature
413: 83 – 86

Lacroix M (2008) Persistent use of ‘false’ cell lines. Int J Cancer 122: 1 – 4
Lee PH, Ayyampalayam SN, Carreira LA, Shalaeva M, Bhattachar S,

Coselmon R, Poole S, Gifford E, Lombardo F (2007) In silico prediction
of ionization constants of drugs. Mol Pharm 4: 498 – 512

Lehr HA, Leunig M, Menger MD, Nolte D, Messmer K (1993) Dorsal
skinfold chamber technique for intravital microscopy in nude mice. Am J
Pathol 143: 1055 – 1062

Li M, Huang X, Zhu Z, Wong M, Watkins S, Zhao Q, Herberman R, Gorelik
E (2001) Immune response against 3LL Lewis lung carcinoma potentiates
the therapeutic efficacy of endostatin. J Immunother 24: 472 – 481

Li Z, Chen Z, Lu J, Cen J, He J, Chen S, Xue Y, Guo L (2006) Establishment
of a nude mice model of human monocytic leukemia with CNS and
multiorgan extramedullary infiltration. Eur J Haematol 77: 128 – 133

Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S, Ramirez
CD, Rice AM, Haber M, Norris MD, MacKenzie KL, Lock RB (2004)
Characterization of childhood acute lymphoblastic leukemia xenograft
models for the preclinical evaluation of new therapies. Blood 103: 3905 – 3914

Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH,
Hunter KW (1998) Identification of inbred mouse strains harboring
genetic modifiers of mammary tumor age of onset and metastatic
progression. Int J Cancer 77: 640 – 644

Lock RB, Liem NL, Papa RA (2005) Preclinical testing of antileukemic drugs
using an in vivo model of systemic disease. Methods Mol Med 111: 323 – 334

Mahteme H, Lovqvist A, Graf W, Lundqvist H, Carlsson J, Sundin A
(1998) Adjuvant 131I-anti-CEA-antibody radioimmunotherapy inhibits
the development of experimental colonic carcinoma liver metastases.
Anticancer Res 18: 843 – 848

Mannhold R, Poda GI, Ostermann C, Tetko IV (2009) Calculation of
molecular lipophilicity: state-of-the-art and comparison of log P methods
on more than 96,000 compounds. J Pharm Sci 98: 861 – 893

Marcotte R, Muller WJ (2008) Signal transduction in transgenic mouse
models of human breast cancer – implications for human breast cancer.
J Mammary Gland Biol Neoplasia 13: 323 – 335

Martensson L, Wang Z, Nilsson R, Ohlsson T, Senter P, Sjogren HO,
Strand SE, Tennvall J (2005) Determining maximal tolerable dose of the
monoclonal antibody BR96 labeled with 90Y or 177Lu in rats: establish-
ment of a syngeneic tumor model to evaluate means to improve
radioimmunotherapy. Clin Cancer Res 11: 7104s– 7108s

Martinsen TC, Kawase S, Hakanson R, Torp SH, Fossmark R, Qvigstad G,
Sandvik AK, Waldum HL (2003) Spontaneous ECL cell carcinomas in
cotton rats: natural course and prevention by a gastrin receptor
antagonist. Carcinogenesis 24: 1887 – 1896

Masimirembwa CM, Thompson R, Andersson TB (2001) In vitro high
throughput screening of compounds for favorable metabolic
properties in drug discovery. Comb Chem High Throughput Screen 4:
245 – 263

Masters JR et al (2001) Short tandem repeat profiling provides an
international reference standard for human cell lines. Proc Natl Acad Sci
USA 98: 8012 – 8017

McCann CM, Waterman P, Figueiredo JL, Aikawa E, Weissleder R, Chen JW
(2009) Combined magnetic resonance and fluorescence imaging of the
living mouse brain reveals glioma response to chemotherapy. Neuro-
image 45: 360 – 369

Mitra SK, Lim ST, Chi A, Schlaepfer DD (2006) Intrinsic focal adhesion
kinase activity controls orthotopic breast carcinoma metastasis via the
regulation of urokinase plasminogen activator expression in a syngeneic
tumor model. Oncogene 25: 4429 – 4440

Miyazaki K, Koshikawa N, Hasegawa S, Momiyama N, Nagashima Y,
Moriyama K, Ichikawa Y, Ishikawa T, Mitsuhashi M, Shimada H (1999)
Matrilysin as a target for chemotherapy for colon cancer: use of antisense
oligonucleotides as antimetastatic agents. Cancer Chemother Pharmacol
43Suppl: S52 – S55

Morton DB, Jennings M, Buckwell A, Ewbank R, Godfrey C, Holgate B,
Inglis I, James R, Page C, Sharman I, Verschoyle R, Westall L, Wilson AB
(2001) Refining procedures for the administration of substances. Report
of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on
Refinement. British Veterinary Association Animal Welfare Founda-
tion/Fund for the Replacement of Animals in Medical Experiments/Royal
Society for the Prevention of Cruelty to Animals/Universities Federation
for Animal Welfare. Lab Anim 35: 1 – 41

Nakai M, Mundy GR, Williams PJ, Boyce B, Yoneda T (1992) A synthetic
antagonist to laminin inhibits the formation of osteolytic metastases by
human melanoma cells in nude mice. Cancer Res 52: 5395 – 5399

Nakatsugawa S, Okuda T, Muramoto H, Koyama K, Ishigaki T, Tsuruoka T,
Hosokawa M, Kobayashi H (1999) Inhibitory effect of ND2001 on
spontaneous multiple metastasis of NC 65 tumors derived from human
renal cancer cells intradermally transplanted into nude mice. Anticancer
Drugs 10: 229 – 233

Narciso SP, Nadziejko E, Chen LC, Gordon T, Nadziejko C (2003)
Adaptation to stress induced by restraining rats and mice in nose-only
inhalation holders. Inhal Toxicol 15: 1133 – 1143

Nardone RM (2007) Eradication of cross-contaminated cell lines: a call for
action. Cell Biol Toxicol 23: 367 – 372

Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB, Reynolds CP,
Maris JM, Friedman HS, Dome J, Khoury J, Triche TJ, Seeger RC,
Gilbertson R, Khan J, Smith MA, Houghton PJ (2008) Molecular
characterization of the pediatric preclinical testing panel. Clin Cancer
Res 14: 4572 – 4583

Nguyen DX, Bos PD, Massague J (2009a) Metastasis: from dissemination to
organ-specific colonization. Nat Rev Cancer 9: 274 – 284

Nguyen QD, Smith G, Glaser M, Perumal M, Arstad E, Aboagye EO (2009b)
Positron emission tomography imaging of drug-induced tumor apopto-
sis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl
Acad Sci USA 106: 16375 – 16380

Nijmeijer BA, Mollevanger P, van Zelderen-Bhola SL, Kluin-Nelemans HC,
Willemze R, Falkenburg JH (2001) Monitoring of engraftment and
progression of acute lymphoblastic leukemia in individual NOD/SCID
mice. Exp Hematol 29: 322 – 329

Noel A, De Pauw-Gillet MC, Purnell G, Nusgens B, Lapiere CM, Foidart JM
(1993) Enhancement of tumorigenicity of human breast adenocarcinoma
cells in nude mice by Matrigel and fibroblasts. Br J Cancer 68: 909 – 915

Nordsmark M, Maxwell RJ, Wood PJ, Stratford IJ, Adams GE, Overgaard J,
Horsman MR (1996) Effect of hydralazine in spontaneous tumours
assessed by oxygen electrodes and 31P-magnetic resonance spectro-
scopy. Br J Cancer Suppl 27: S232 – S235

Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem
R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts
present in invasive human breast carcinomas promote tumor growth

Guidelines for the welfare and use of animals in cancer research

P Workman et al

1574

British Journal of Cancer (2010) 102(11), 1555 – 1577 & 2010 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:
335 – 348

Osborne NJ, Payne D, Newman ML (2009) Journal editorial policies, animal
welfare, and the 3Rs. Am J Bioeth 9: 55 – 59

Ottaviani G, Martel S, Carrupt PA (2006) Parallel artificial membrane
permeability assay: a new membrane for the fast prediction of passive
human skin permeability. J Med Chem 49: 3948 – 3954

Park ES, Rabinovsky R, Carey M, Hennessy BT, Agarwal R, Liu W, Ju Z,
Deng W, Lu Y, Woo HG, Kim SB, Cheong JH, Garraway LA, Weinstein
JN, Mills GB, Lee JS, Davies MA (2010) Integrative analysis of proteomic
signatures, mutations, drug responsiveness in the NCI 60 cancer cell
line set. Mol Cancer Ther 9: 257 – 267

Parodi B, Aresu O, Bini D, Lorenzini R, Schena F, Visconti P, Cesaro M,
Ferrera D, Andreotti V, Ruzzon T (2002) Species identification and
confirmation of human and animal cell lines: a PCR-based method.
Biotechniques 32: 432 – 434, 436, 438 – 40

Patel S, Turner PR, Stubberfield C, Barry E, Rohlff CR, Stamps A,
McKenzie E, Young K, Tyson K, Terrett J, Box G, Eccles S, Page MJ
(2002) Hyaluronidase gene profiling and role of hyal-1 overexpression in
an orthotopic model of prostate cancer. Int J Cancer 97: 416 – 424

Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of
protein – protein interactions in living subjects by using reporter protein
complementation and reconstitution strategies. Proc Natl Acad Sci USA
99: 15608 – 15613

Pearse G, Frith J, Randall KJ, Klinowska T (2009) Urinary retention and
cystitis associated with subcutaneous estradiol pellets in female nude
mice. Toxicol Pathol 37: 227 – 234

Pelengaris S, Littlewood T, Khan M, Elia G, Evan G (1999) Reversible
activation of c-Myc in skin: induction of a complex neoplastic phenotype
by a single oncogenic lesion. Mol Cell 3: 565 – 577

Pillai RG, Forster M, Perumal M, Mitchell F, Leyton J, Aibgirhio FI, Golovko
O, Jackman AL, Aboagye EO (2008) Imaging pharmacodynamics of the
alpha-folate receptor-targeted thymidylate synthase inhibitor BGC 945.
Cancer Res 68: 3827 – 3834

Politi K, Fan PD, Shen R, Zakowski M, Varmus H (2010) Erlotinib
resistance in mouse models of epidermal growth factor receptor-induced
lung adenocarcinoma. Dis Model Mech 3: 111 – 119

Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE (2006)
Lung adenocarcinomas induced in mice by mutant EGF receptors found
in human lung cancers respond to a tyrosine kinase inhibitor or to
downregulation of the receptors. Genes Dev 20: 1496 – 1510

Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO,
Tuffin G, Drewe J, Huwyler J (2008) The human brain endothelial cell
line hCMEC/D3 as a human blood – brain barrier model for drug
transport studies. J Neurochem 107: 1358 – 1368

Prigozhina TB, Gurevitch O, Morecki S, Yakovlev E, Elkin G, Slavin S
(2002) Nonmyeloablative allogeneic bone marrow transplantation as
immunotherapy for hematologic malignancies and metastatic solid
tumors in preclinical models. Exp Hematol 30: 89 – 96

Qian CN, Furge KA, Knol J, Huang D, Chen J, Dykema KJ, Kort EJ,
Massie A, Khoo SK, Vanden Beldt K, Resau JH, Anema J, Kahnoski RJ,
Morreau H, Camparo P, Comperat E, Sibony M, Denoux Y, Molinie V,
Vieillefond A, Eng C, Williams BO, Teh BT (2009) Activation of the
Pl3K/AKT pathway induces urothelial carcinoma of the renal pelvis:
identification in human tumors and confirmation in animal models.
Cancer Res 69: 8256 – 8264

Quaglino E, Mastini C, Forni G, Cavallo F (2008) ErbB2 transgenic mice:
a tool for investigation of the immune prevention and treatment
of mammary carcinomas. Curr Protoc Immunol Chapter 20: Unit 20 9 1 –
Unit 20 9 – 10

Radaelli E, Ceruti R, Patton V, Russo M, Degrassi A, Croci V, Caprera F,
Stortini G, Scanziani E, Pesenti E, Alzani R (2009) Immunohistopatho-
logical and neuroimaging characterization of murine orthotopic
xenograft models of glioblastoma multiforme recapitulating the most
salient features of human disease. Histol Histopathol 24: 879 – 891

Ragel BT, Elam IL, Gillespie DL, Flynn JR, Kelly DA, Mabey D, Feng H,
Couldwell WT, Jensen RL (2008) A novel model of intracranial
meningioma in mice using luciferase-expressing meningioma cells.
Laboratory investigation. J Neurosurg 108: 304 – 310

Redgate ES, Deutsch M, Boggs SS (1991) Time of death of CNS tumor-
bearing rats can be reliably predicted by body weight-loss patterns.
Lab Anim Sci 41: 269 – 273

Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T (2000)
Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-
specific effects. Nat Genet 26: 109 – 113

Reyes-Aldasoro CC, Wilson I, Prise VE, Barber PR, Ameer-Beg M, Vojnovic
B, Cunningham VJ, Tozer GM (2008) Estimation of apparent tumor
vascular permeability from multiphoton fluorescence microscopic
images of P22 rat sarcomas in vivo. Microcirculation 15: 65 – 79

Richardson CA, Flecknell PA (2005) Anaesthesia and post-operative
analgesia following experimental surgery in laboratory rodents: are we
making progress? Altern Lab Anim 33: 119 – 127

Riley RJ, Martin IJ, Cooper AE (2002) The influence of DMPK as an
integrated partner in modern drug discovery. Curr Drug Metab 3:
527 – 550

Robanus-Maandag E, Dekker M, van der Valk M, Carrozza ML, Jeanny JC,
Dannenberg JH, Berns A, te Riele H (1998) p107 is a suppressor
of retinoblastoma development in pRb-deficient mice. Genes Dev 12:
1599 – 1609

Rodriguez-Cuesta J, Vidal-Vanaclocha F, Mendoza L, Valcarcel M, Gallot N,
Martinez de Tejada G (2005) Effect of asymptomatic natural infections
due to common mouse pathogens on the metastatic progression of B16
murine melanoma in C57BL/6 mice. Clin Exp Metastasis 22: 549 – 558

Rottenberg S, Jonkers J (2008) Modeling therapy resistance in genetically
engineered mouse cancer models. Drug Resist Updat 11: 51 – 60

Roughan JV, Flecknell PA, Davies BR (2004) Behavioural assessment of the
effects of tumour growth in rats and the influence of the analgesics
carprofen and meloxicam. Lab Anim 38: 286 – 296

Rowland M, Tozer TN (1995) Clinical Pharmacokinetics: Concepts and
Applications. 3rd edn., Chapter 7, pp 83–105. Williams and Wilkins (now
Lippincott, Williams and Wilkins): Philadelphia, USA

Rubio-Viqueira B, Hidalgo M (2009) Direct in vivo xenograft tumor model
for predicting chemotherapeutic drug response in cancer patients.
Clin Pharmacol Ther 85: 217 – 221

Rusciano D, Lorenzoni P, Burger M (1994) Murine models of liver
metastasis. Invasion Metastasis 14: 349 – 361

Russell PJ, Ho Shon I, Boniface GR, Izard ME, Philips J, Raghavan D,
Walker KZ (1991) Growth and metastasis of human bladder cancer
xenografts in the bladder of nude rats. A model for intravesical
radioimmunotherapy. Urol Res 19: 207 – 213

Russell WMS, Burch RL (1959) The Principles of Humane Experimental
Technique. Methuen: London

Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS (2010) A census
of amplified and overexpressed human cancer genes. Nat Rev Cancer 10:
59 – 64

Sausville EA, Burger AM, Becher OJ, Holland EC (2006) Contributions of
human tumor xenografts to anticancer drug development 10.1158/0008-
5472.CAN-05-3627. Cancer Res 66: 3351 – 3354

Sawyers C (2004) Targeted cancer therapy. Nature 432: 294 – 297
Serganova I, Moroz E, Vider J, Gogiberidze G, Moroz M, Pillarsetty N,

Doubrovin M, Minn A, Thaler HT, Massague J, Gelovani J, Blasberg R
(2009) Multimodality imaging of TGFbeta signaling in breast cancer
metastases. FASEB J 23: 2662 – 2672

Sharkey RM, Weadock KS, Natale A, Haywood L, Aninipot R, Blumenthal RD,
Goldenberg DM (1991) Successful radioimmunotherapy for lung metastasis
of human colonic cancer in nude mice. J Natl Cancer Inst 83: 627 – 632

Sharpless NE, DePinho RA (2006) The mighty mouse: genetically
engineered mouse models in cancer drug development. Nat Rev Drug
Discov 5: 741 – 754

Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto
H, Takano H, Akiyama T, Toyoshima K, Kanamaru R, Kanegae Y, Saito I,
Nakamura Y, Shiba K, Noda T (1997) Rapid colorectal adenoma
formation initiated by conditional targeting of the Apc gene. Science
278: 120 – 123

Shibata MA, Shibata E, Morimoto J, Eid NA, Tanaka Y, Watanabe M,
Otsuki Y (2009) An immunocompetent murine model of metastatic
mammary cancer accessible to bioluminescence imaging. Anticancer Res
29: 4389 – 4395

Siim BG, Lee AE, Shalal-Zwain S, Pruijn FB, McKeage MJ, Wilson WR
(2003) Marked potentiation of the antitumour activity of chemother-
apeutic drugs by the antivascular agent 5,6-dimethylxanthenone-4-acetic
acid (DMXAA). Cancer Chemother Pharmacol 51: 43 – 52

Singh SS (2006) Preclinical pharmacokinetics: an approach towards safer
and efficacious drugs. Curr Drug Metab 7: 165 – 182

Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P (1987)
Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic
mice: synergistic action of oncogenes in vivo. Cell 49: 465 – 475

Smith NF, Raynaud FI, Workman P (2007) The application of cassette
dosing for pharmacokinetic screening in small-molecule cancer drug
discovery. Mol Cancer Ther 6: 428 – 440

Guidelines for the welfare and use of animals in cancer research

P Workman et al

1575

British Journal of Cancer (2010) 102(11), 1555 – 1577& 2010 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s



Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM,
Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc
inhibition as a cancer therapy. Nature 455: 679 – 683

Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff
M, Marini F (2009) Mesenchymal stem cell transition to tumor-
associated fibroblasts contributes to fibrovascular network expansion
and tumor progression. PLoS One 4: e4992

Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mark TW
(2000) High incidence of breast and endometrial neoplasia resembling
human Cowden syndrome in ptenþ /� mice. Cancer Res 60: 3605 – 3611

Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature
458: 719 – 724

Sung H, Kang SH, Bae YJ, Hong JT, Chung YB, Lee CK, Song S (2006) PCR-
based detection of mycoplasma species. J Microbiol 44: 42 – 49

Takeda N, Diksic M (1999) Relationship between drug delivery and the
intra-arterial infusion rate of SarCNU in C6 rat brain tumor model.
J Neurooncol 41: 235 – 246

Taketo MM (2006) Mouse models of gastrointestinal tumors. Cancer Sci 97:
355 – 361

Tan M, Fang HB, Tian GL, Houghton PJ (2005) Repeated-measures models
with constrained parameters for incomplete data in tumour xenograft
experiments. Stat Med 24: 109 – 119

Tanaka T, Konno H, Matsuda I, Nakamura S, Baba S (1995) Prevention of
hepatic metastasis of human colon cancer by angiogenesis inhibitor
TNP-470. Cancer Res 55: 836 – 839

Tennant DA, Frezza C, MacKenzie ED, Nguyen QD, Zheng L, Selak MA,
Roberts DL, Dive C, Watson DG, Aboagye EO, Gottlieb E (2009)
Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic
catastrophe and cell death. Oncogene 28: 4009 – 4021

Tsai PP, Stelzer HD, Schraepler A, Hackbarth H (2006) Importance and
effects of enrichment on physiology, behaviour and breeding perfor-
mance in mice. Altex 23 (Suppl): 96 – 98

Tuchin VV (1993) Laser light scattering in biomedical diagnostics and
therapy. J Laser Appl 5: 43 – 60

Ullman-Cullere MH, Foltz CJ (1999) Body condition scoring: a rapid and accurate
method for assessing health status in mice. Lab Anim Sci 49: 319 – 323

van Furth WR, Laughlin S, Taylor MD, Salhia B, Mainprize T, Henkelman M,
Cusimano MD, Ackerley C, Rutka JT (2003) Imaging of murine brain
tumors using a 1.5 Tesla clinical MRI system. Can J Neurol Sci 30: 326 – 332

van Kranen HJ, de Gruijl FR (1999) Mutations in cancer genes of
UV-induced skin tumors of hairless mice. J Epidemiol 9: S58 – S65

Varticovski L, Hollingshead MG, Robles AI, Wu X, Cherry J, Munroe DJ,
Lukes L, Anver MR, Carter JP, Borgel SD, Stotler H, Bonomi CA, Nunez
NP, Hursting SD, Qiao W, Deng CX, Green JE, Hunter KW, Merlino G,
Steeg PS, Wakefield LM, Barrett JC (2007) Accelerated preclinical testing
using transplanted tumors from genetically engineered mouse breast
cancer models. Clin Cancer Res 13: 2168 – 2177

Verheul HM, Hammers H, van Erp K, Wei Y, Sanni T, Salumbides B,
Qian DZ, Yancopoulos GD, Pili R (2007) Vascular endothelial growth
factor trap blocks tumor growth, metastasis formation, and vascular
leakage in an orthotopic murine renal cell cancer model. Clin Cancer Res
13: 4201 – 4208

Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they
control. Nat Med 10: 789 – 799

Warden SJ, Bennell KL, McMeeken JM, Wark JD (2000) A technique for
restraining rodents during hindlimb interventions. Contemp Top Lab
Anim Sci 39: 24 – 27

Watanabe H, Uesaka T, Kido S, Ishimura Y, Shiraki K, Kuramoto K,
Hirata S, Shoji S, Katoh O, Fujimoto N (1999) Gastric tumor induction by
1,2-dimethylhydrazine in Wistar rats with intestinal metaplasia caused
by X-irradiation. Jpn J Cancer Res 90: 1207 – 1211

Watanabe T, Schulz D, Morisseau C, Hammock BD (2006) High-throughput
pharmacokinetic method: cassette dosing in mice associated with minuscule
serial bleedings and LC/MS/MS analysis. Anal Chim Acta 559: 37 – 44

Watson SA, Michaeli D, Morris TM, Clarke P, Varro A, Griffin N, Smith A,
Justin T, Hardcastle JD (1999a) Antibodies raised by gastrimmune
inhibit the spontaneous metastasis of a human colorectal tumour,
AP5LV. Eur J Cancer 35: 1286 – 1291

Watson SA, Morris TM, Varro A, Michaeli D, Smith AM (1999b) A
comparison of the therapeutic effectiveness of gastrin neutralisation in
two human gastric cancer models: relation to endocrine and autocrine/
paracrine gastrin mediated growth. Gut 45: 812 – 817

Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM (1997)
Targeted expression of MYCN causes neuroblastoma in transgenic mice.
EMBO J 16: 2985 – 2995

Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology.
Nature 452: 580 – 589

Wells DJ, Playle LC, Enser WE, Flecknell PA, Gardiner MA, Holland J,
Howard BR, Hubrecht R, Humphreys KR, Jackson IJ, Lane N, Maconochie M,
Mason G, Morton DB, Raymond R, Robinson V, Smith JA, Watt N (2006)
Assessing the welfare of genetically altered mice. Lab Anim 40: 111 – 114

Wetmore C, Eberhart DE, Curran T (2001) Loss of p53 but not ARF
accelerates medulloblastoma in mice heterozygous for patched. Cancer
Res 61: 513 – 516

Winter SF, Hunter KW (2008) Mouse modifier genes in mammary tumorigen-
esis and metastasis. J Mammary Gland Biol Neoplasia 13: 337 – 342

Wood PJ, Stratford IJ, Sansom JM, Cattanach BM, Quinney RM, Adams GE
(1992) The response of spontaneous and transplantable murine tumors
to vasoactive agents measured by 31P magnetic resonance spectroscopy.
Int J Radiat Oncol Biol Phys 22: 473 – 476

Workman P, Balmain A, Hickman JA, McNally NJ, Rohas AM, Mitchison
NA, Pierrepoint CG, Raymond R, Rowlatt C, Stephens TC, Wallace J
(1988) UKCCCR guidelines for the welfare of animals in experimental
neoplasia. Br J Cancer 58: 109–113

Workman P, Aboagye EO, Chung YL, Griffiths JR, Hart R, Leach MO,
Maxwell RJ, McSheehy PM, Price PM, Zweit J (2006) Minimally invasive
pharmacokinetic and pharmacodynamic technologies in hypothesis-
testing clinical trials of innovative therapies. J Natl Cancer Inst 98:
580 – 598

Workman P, de Bono J (2008) Targeted therapeutics for cancer treatment:
major progress towards personalised molecular medicine. Curr Opin
Pharmacol 8: 359 – 362

Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin D, Double J,
Embleton J, Newell D, Raymond R, Stables J, Stephens T, Wallace J
(1998) UKCCCR guidelines for the welfare of animals in experimental
neoplasia (Second Edition). Br J Cancer 77: 1 – 10

Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T, Hennighausen L,
Wynshaw-Boris A, Deng CX (1999) Conditional mutation of Brca1 in
mammary epithelial cells results in blunted ductal morphogenesis and
tumour formation. Nat Genet 22: 37 – 43

Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X, Sajja HK, Wang L, Duan
H, Ni C, Staley CA, Wood WC, Gao X, Nie S (2009) Molecular imaging of
pancreatic cancer in an animal model using targeted multifunctional
nanoparticles. Gastroenterology 136: 1514 – 1525; e2

Yang M, Reynoso J, Jiang P, Li L, Moossa AR, Hoffman RM (2004)
Transgenic nude mouse with ubiquitous green fluorescent protein
expression as a host for human tumors. Cancer Res 64: 8651 – 8656

Yang W, Velcich A, Mariadason J, Nicholas C, Corner G, Houston M,
Edelmann W, Kucherlapati R, Holt PR, Augenlicht LH (2001) p21(WAF1/
cip1) is an important determinant of intestinal cell response to sulindac
in vitro and in vivo. Cancer Res 61: 6297 – 6302

Yoshino K, Iimura E, Saijo K, Iwase S, Fukami K, Ohno T, Obata Y,
Nakamura Y (2006) Essential role for gene profiling analysis in the
authentication of human cell lines. Hum Cell 19: 43 – 48

Zavaleta CL, Goins BA, Bao A, McManus LM, McMahan CA, Phillips WT
(2008) Imaging of 186Re-liposome therapy in ovarian cancer xenograft
model of peritoneal carcinomatosis. J Drug Target 16: 626 – 637

Zhau HE, Li CL, Chung LW (2000) Establishment of human prostate
carcinoma skeletal metastasis models. Cancer 88: 2995 – 3001

Zheng Q, Chen XY, Shi Y, Xiao SD (2004) Development of gastric
adenocarcinoma in Mongolian gerbils after long-term infection with
Helicobacter pylori. J Gastroenterol Hepatol 19: 1192 – 1198

Zhu JS, Song MQ, Chen GQ, Li Q, Sun Q, Zhang Q (2007) Molecular
mechanisms of paclitaxel and NM-3 on human gastric cancer in a severe
combined immune deficiency mice orthotopic implantation model.
World J Gastroenterol 13: 4131 – 4135

Zisman A, Pantuck AJ, Bui MH, Said JW, Caliliw RR, Rao N, Shintaku P,
Berger F, Gambhir SS, Belldegrun AS (2003) LABAZ1: a metastatic tumor
model for renal cell carcinoma expressing the carbonic anhydrase type 9
tumor antigen. Cancer Res 63: 4952 – 4959

Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W, McCurrach
ME, Yang MM, Dolan ME, Kogan SC, Downing JR, Lowe SW (2009)
Mouse models of human AML accurately predict chemotherapy
response. Genes Dev 23: 877 – 889

Guidelines for the welfare and use of animals in cancer research

P Workman et al

1576

British Journal of Cancer (2010) 102(11), 1555 – 1577 & 2010 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



Additional information

Committee to Update Science, Medicine, and Animals, National
Research Council (2004) Sciences, Medicine, and Animals: National
Research Council of The National Academies. The National
Academies Press: Washington, DC, USA
Dennis C (2006) Cancer: off by a whisker. Nature 17: 739–741
Garber K (2006) Realistic rodents? Debate grows over new mouse
models of cancer. J Natl Cancer Inst 98: 1176–1178
Guidelines for the Care and Use of Mammals in Neuroscience and
Behavioural Research. Committee on Guidelines for the Use of
Animals in Neuroscience and Behavioural Research, (Institute for
Laboratory Animal Research, Washington, D.C. 2003). National
Research Council
Flecknell P (2008) Analgesia from a veterinary perspective. Br J
Anaesth 101: 121–124
Richardson CA, Flecknell PA (2005) Anaesthesia and post-
operative analgesia following experimental surgery in laboratory
rodents: are we making progress? Altern Lab Anim 33: 119–127
Roughan JV, Flecknell PA, Davies BR (2004) Behavioural assessment
of the effects of tumour growth in rats and the influence of the
analgesics carprofen and meloxicam. Lab Anim 38: 286–296
The Royal Society (2004) The Use of Non-human Animals in
Research: a Guide for Scientists. Science Advice Section, The Royal
Society: London, UK

Useful weblinks

http://scienceandresearch.homeoffice.gov.uk/animal-research/
publications-and-reference/statistics/
http://www.sanger.ac.uk/genetics/CGP
http://emice.nci.nih.gov/mouse_models
http://dels.nas.edu/ilar_n/ilarhome/reports.shtml
http://ec.europa.eu/environment/chemicals/lab_animals/home_en.htm
http://www.iasp-pain.org/AM/Template.cfm?Section=Animal_Research
http://ec.europa.eu/european_group_ethics/docs/opinion7_en.pdf
http://conventions.coe.int/treaty/en/treaties/html/123.htm
http://www.ecopa.eu/
http://caat.jhsph.edu/
http://www.imm.ki.se/sft/pdf/OECD19.pdf
http://oacu.od.nih.gov/ARAC/index.htm
http://www.research.psu.edu/arp/health/endpoints.html
http://www.nc3rs.org.uk/news.asp?id=759
http://ddgs.utu.fi/request.php?4
http://www.lal.org.uk/index.php?option=com_content&view=article&
id=56&Itemid
http://www.nc3rs.org.uk

Glossary

Allometric scaling: Calculation of doses of drugs to be
administered to animals according to their relative sizes where
the relationship of a biological variable to body mass is non-linear.
For example, drug dosage can be linearly related to body surface
area rather than to body weight.

Ascites: Cells/fluid in the peritoneal cavity.
Autochthonous tumours: Tumours originating within the host

animal, either spontaneously, or due to genetic or pharmacological
intervention.

Cachexia: Severe loss of weight and muscle mass that cannot be
reversed nutritionally. Can be caused by release of biologically
active molecules (cytokines) from certain tumours.

Cassette dosing: Administration of multiple compounds to an
individual animal followed by individual measurements in the
same blood sample.

Clinically equivalent dose: A dose of a drug, which results in
blood/tissue levels that reflect those that are achieved in patients.

Clonogenic assay: Measuring the effect of treatments on the
ability of tumour cells to proliferate expansively. Treatment may
be in vitro or initiated in vivo and the clonogenic ability of
explanted cells tested in vitro.

Desquamation: Loss of skin integrity. Moist desquamation can
be a consequence of exposure to ionising radiation (UV or X-rays)
where the skin thins and then begins to weep tissue fluid as the
epithelial cells lose their barrier function.

Distension: Stretched beyond normal dimensions.
Ectopic: Site of growth different from the tissue of origin, for

example, s.c. transplantation of tumours derived from internal organs.
Erythema: Skin reddening and thickening in response to UV

irradiation, as in mild sunburn.
Factorial design: Involves the inclusion of two or more variables

and measuring the response to each variable and interactions
between variables.

Genetically engineered mouse models (GEMMs): Animals in
which the genetic material has been altered. For example,
introduction of a mutation in cells of a particular organ may
result in the development of benign or malignant tumours.

Hyperplasia: Refers to the proliferation of cells within an organ
or tissue beyond that which is ordinarily seen. Microscopically

cells resemble normal cells but are increased in numbers. It is a
benign condition, unlike neoplasia, which is malignant.

Intravital microscopy: A technique, which allows direct obser-
vation of small blood vessels within the organs of anesthetised
animals.

Maximum Tolerated Dose (MTD): The highest dose of a drug in
which the clinical condition of the experimental animal is maintained.

Metastasis: The spread of tumour cells from a primary site to
distant sites in the body, usually through the blood or lymph.
The term ‘experimental metastasis’ is sometimes used to describe
the colonisation of organs after injection of cells directly into the
peripheral circulation.

Oncogenesis: The process of malignant transformation resulting
in tumour development.

Orthotopic: Anatomically correct site (opposite of ectopic), for
example, transplantation of renal tumour cells into the kidney or
mammary carcinoma cells into the mammary fat pad.

Pharmacodynamics: The study of the action of and the duration
of effects of agents in the body, including confirmation of
mechanism of action through identification of relevant biomarkers
of activity.

Pharmacokinetics: The study of the process by which agents are
absorbed, distributed, metabolized and eliminated by the body,
including measurement of the rate of excretion, metabolism, blood
and tissue concentrations.

Syngeneic tumour models: Cells transplanted between animals
of the same inbred strain.

Ulceration: An inflamed lesion on the skin or internal surface
involving tissue destruction.

Xenogeneic tumour models: Cells transplanted between species
(e.g., human to mouse). Requires recipients that cannot mount an
immune response and reject the foreign tissue graft such as
athymic mice which lack T-lymphocytes, or severe combined
immunodeficient (SCID) mice.

This work is licensed under the Creative Commons
Attribution-NonCommercial-Share Alike 3.0 License.

To view a copy of this license, visit http://creativecommons.org/
licenses/by-nc-sa/3.0/
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