Effect of irradiance on the emission of short-lived halocarbons from three common tropical marine microalgae

Yong-Kian Lim¹,²,³, Fiona Seh-Lin Keng¹,³, Siew-Moi Phang¹,⁴, William T. Sturges⁵, Gill Malin⁵ and Noorsaadah Abd Rahman⁶

¹ Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur, Malaysia
² Institute of Graduate Studies (IPS), University of Malaya, Kuala Lumpur, Malaysia
³ The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Hong Kong, SAR
⁴ Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
⁵ Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
⁶ Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

ABSTRACT

Marine algae have been reported as important sources of biogenic volatile halocarbons that are emitted into the atmosphere. These compounds are linked to destruction of the ozone layer, thus contributing to climate change. There may be mutual interactions between the halocarbon emission and the environment. In this study, the effect of irradiance on the emission of halocarbons from selected microalgae was investigated. Using controlled laboratory experiments, three tropical marine microalgal cultures, Synechococcus sp. UMACC 371 (cyanophyte), Parachlorella sp. UMACC 245 (chlorophyte) and Amphora sp. UMACC 370 (diatom) were exposed to irradiance of 0, 40 and 120 μmol photons m⁻² s⁻¹. Stress in the microalgal cultures was indicated by the photosynthetic performance (Fv/Fm, maximum quantum yield). An increase in halocarbon emissions was observed at 120 μmol photons m⁻² s⁻¹, together with a decrease in Fv/Fm. This was most evident in the release of CH₃I by Amphora sp. Synechococcus sp. was observed to be the most affected by irradiance as shown by the increase in emissions of most halocarbons except for CHBr₃ and CHBr₂Cl. High positive correlation between Fv/Fm and halocarbon emission rates was observed in Synechococcus sp. for CH₂Br₂. No clear trends in correlation could be observed for the other halocarbons in the other two microalgal species. This suggests that other mechanisms like mitochondria respiration may contribute to halocarbon production, in addition to photosynthetic performance.

INTRODUCTION

Long-lived anthropogenic substances such as chlorofluorocarbons are widely known as the main cause of the depletion of stratospheric ozone, but more recently, especially since preindustrial times, very short-lived substances, typically of lifetimes no longer than six...