Protecting the Malacca and Singapore Straits from Ships’ Atmospheric Emissions through the Implementation of MARPOL Annex VI

Mary George,*a Abdul Samad Shaik Osman,b Hanafi Hussinc and Anneliz Reina George
d
a Institute of Ocean and Earth Sciences and the Faculty of Law, University of Malaya, Malaysia
b Principal Assistant Director, Ship Accreditation Unit, Maritime Industrial Control Division, Marine Department, Ministry of Transport, Malaysia
c Institute of Ocean and Earth Sciences and the Faculty of Arts, University of Malaya, Malaysia
d Researcher, Pursuing Master of Economics, University of Malaya, Malaysia

Abstract

The International Maritime Organization (IMO) adopted legally binding regulations for the control of ships’ atmospheric emissions under Annex VI of the International Convention for the Prevention of Marine Pollution from Ships, 1973/78. With Singapore, Malaysia and Indonesia being States Parties thereto, consequently, one of the effects in the Malacca and Singapore Straits is that it enables the Straits States, together with the IMO, to designate emission control areas for the approximately 75,000 ships transiting annually. This article examines the robust provisions of Annex VI for the marine environmental protection of the Straits and the contentious debates preceding an otherwise dead-locked technology-transfer resolution for implementing Annex VI. If implemented, Annex VI provisions will represent a unique milestone in the protection of the marine environment of the Straits which is regulated by the restrictive provisions of Part III of the 1982 United Nations Convention on the Law of the Sea.

* Corresponding author, e-mail: maryg@um.edu.my. Acknowledgment: This study was carried out under University of Malaya Research Project No. RP 001B-13SUS. Mary George thanks the staff of the University of Malaya; the Ministry of Transport, Malaysia; the Library, The Institute of Advanced Legal Studies, London; the Wolff International and Comparative Law Library of the Georgetown University Law Center; and Captain Simon Bennet of Swire for all support in this research.