A growing threat to the ozone layer from short-lived anthropogenic chlorocarbons

David E. Oram1,2, Matthew J. Ashfold3, Johannes C. Laube2, Lauren J. Gooch2, Stephen Humphrey2, William T. Sturges2, Emma Leedham-Elvidge2,8, Grant L. Forster1,2, Neil R. P. Harris4, Mohammed Iqbal Mead4,5, Azizan Abu Samah5, Siew Moi Phang5, Chang-Feng Ou-Yang6, Neng-Huei Lin6, Jia-Lin Wang7, Angela K. Baker8, Carl A. M. Brenninkmeijer8, and David Sherry9

1National Centre for Atmospheric Science, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
2Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
3School of Environmental and Geographical Sciences, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
4Centre for Atmospheric Informatics and Emissions Technology, School of Energy, Environment and Agrifood/Environmental Technology, Cranfield University, Cranfield, UK
5Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
6Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
7Department of Chemistry, National Central University, Taoyuan, Taiwan
8Max Planck Institute for Chemistry, Air Chemistry Division, Mainz, Germany
9Nolan Sherry & Associates, Kingston upon Thames, London, UK

Correspondence to: David E. Oram (d.e.oram@uea.ac.uk)

Received: 25 May 2017 – Discussion started: 2 June 2017
Revised: 12 September 2017 – Accepted: 14 September 2017 – Published: 12 October 2017

Abstract. Large and effective reductions in emissions of long-lived ozone-depleting substance (ODS) are being achieved through the Montreal Protocol, the effectiveness of which can be seen in the declining atmospheric abundances of many ODSs. An important remaining uncertainty concerns the role of very short-lived substances (VSLSs) which, owing to their relatively short atmospheric lifetimes (less than 6 months), are not regulated under the Montreal Protocol. Recent studies have found an unexplained increase in the global tropospheric abundance of one VSLS, dichloromethane (CH\textsubscript{2}Cl\textsubscript{2}), which has increased by around 60\% over the past decade. Here we report dramatic enhancements of several chlorine-containing VSLSs (Cl-VSLSs), including CH\textsubscript{2}Cl\textsubscript{2} and CH\textsubscript{2}ClCH\textsubscript{2}Cl (1,2-dichloroethane), observed in surface and upper-tropospheric air in East and South East Asia. Surface observations were, on occasion, an order of magnitude higher than previously reported in the marine boundary layer, whilst upper-tropospheric data were up to 3 times higher than expected. In addition, we provide further evidence of an atmospheric transport mechanism whereby substantial amounts of industrial pollution from East Asia, including these chlorinated VSLSs, can rapidly, and regularly, be transported to tropical regions of the western Pacific and subsequently uplifted to the tropical upper troposphere. This latter region is a major provider of air entering the stratosphere, and so this mechanism, in conjunction with increasing emissions of Cl-VSLSs from East Asia, could potentially slow the expected recovery of stratospheric ozone.

1 Introduction

Large-scale ozone depletion in the stratosphere is a persisting global environmental problem. It is predominantly caused by the release of reactive chlorine and bromine species from halogenated organic compounds. Although the basic science is well established, there remains significant uncertainty sur-